Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Optical fibers are dielectric waveguides that transport light between two points. They are usually made of high-purity glasses. It is well known that light travels in a straight line in free space but when light is trapped in an optical fiber, it can propagate with bends and can carry information anywhere from a few meters to thousands of kilometers. This property of optical fibers has driven the fabrication of low-loss optical fibers for telecommunication applications. Nowadays, optical fibers are used in many other fields such as lasers, amplifiers, and sensing.

This chapter is organized as follows: In the first part, fundamentals of light guiding in optical fibers will be given. In the second part, after a brief presentation of the fabrication process of optical fibers, some properties of optical fibers such as attenuation, dispersion, polarization effects, and nonlinearities will be presented. In the third part, some types of specialty optical fibers will be described, in particular rare-earth-doped fibers, photonic crystal fibers, nonsilica fibers, and fiber Bragg gratings. Finally, in the fourth part, a focus will be put on some usual applications of optical fibers, in particular for telecommunications, amplifiers, lasers, and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Ghatak, K. Thyagarajan: Introduction to Fiber Optics (Cambridge Univ. Press, Cambridge 1998)

    Book  Google Scholar 

  • A.W. Snyder, J.D. Love: Optical Waveguide Theory (Chapman Hall, London 1983)

    Google Scholar 

  • B.E.A. Saleh, M.C. Teich: Fundamentals of Photonics, 2nd edn. (Wiley, Chichester 2007)

    Google Scholar 

  • D. Gloge: Weakly guiding fibers, Appl. Opt. 10(10), 2252 (1971)

    Article  CAS  Google Scholar 

  • C. Vassallo: Optical Waveguide Concepts (Elsevier, Amsterdam 1991)

    Google Scholar 

  • T.A. Birks, Y.W. Li: The shape of fiber tapers, J. Lightwave Technol. 10(4), 432 (1992)

    Article  Google Scholar 

  • M. Hirano, T. Nakanishi, T. Okuno, M. Onishi: Silica-based highly nonlinear fibers and their application, IEEE J. Sel. Top. Q 15(1), 103 (2009)

    Article  CAS  Google Scholar 

  • N.G.R. Broderick, H.L. Offerhaus, D.J. Richardson, R.A. Sammut, J. Caplen, L. Dong: Large mode area fibers for high power applications, Opt. Fiber Technol. 5(2), 185 (1999)

    Article  Google Scholar 

  • G.P. Agrawal: Nonlinear Fiber Optics, 4th edn. (Academic, Boston 2006)

    Google Scholar 

  • G.P. Agrawal: Fiber-Optic Communications Systems, 3rd edn. (Wiley, Chichester 2002)

    Book  Google Scholar 

  • K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, Y. Chigusa: Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of tranmission distance, Electron. Lett. 38(20), 1168 (2002)

    Article  Google Scholar 

  • S.D. Le, D.M. Nguyen, M. Thual, L. Bramerie: M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, J. Troles: Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber, Opt. Express 19(26), B653 (2011)

    Article  CAS  Google Scholar 

  • G. Genty, S. Coen, J.M. Dudley: Fiber supercontinuum sources, J. Opt. Soc. Am. B 24(8), 1771 (2007)

    Article  CAS  Google Scholar 

  • M.E. Marhic: Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge Univ. Press, Cambridge 2008)

    Google Scholar 

  • K. Inoue: Four-wave mixing in an optical fiber in the zero-dispersion wavelength region, J. Lightwave Technol. 10(11), 1553 (1992)

    Article  Google Scholar 

  • H. Hu, E. Palushani, M. Galili, H.C. Hansen Mulvad, A. Clausen, L. Katsuo Oxenløwe, P. Jeppesen: 640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion, Opt. Express 18(10), 9961 (2010)

    Article  CAS  Google Scholar 

  • F.C. Cruz: Optical frequency combs generated by fourwave mixing in optical fibers for astrophysical spectrometer calibration and metrology, Opt. Express 16(17), 13267 (2008)

    Article  Google Scholar 

  • A. Mendez, T.F. Morse: Specialty Optical Fibers Handbook (Academic Press, Boston 2007)

    Google Scholar 

  • M.J.F. Digonnet (Ed.): Rare Earth Doped Fiber Lasers and Amplifiers, 2nd edn. (CRC, Boca Raton 2001)

    Google Scholar 

  • E. Desurvire: Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, Chichester 1994)

    Google Scholar 

  • D.J. Richardson, J. Nilsson, W.A. Clarkson: High power fiber lasers: Current status and future perspectives, J. Opt. Soc. Am. B 27(11), B63 (2010)

    Article  CAS  Google Scholar 

  • A. Bjarklev, J. Broeng, A.S. Bjarklev: Photonics crystal fibres (Springer, Dordrecht 2012)

    Google Scholar 

  • K. Tajima: Low loss PCF by reduction of hole surface imperfection. In: Proc. 33rd Eur. Conf. Exhib. Opt. Commun. - Post-Deadline Papers (VDE, Frankfurt a.M. 2007) pp. 1–2

    Google Scholar 

  • J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin: All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21, 1547 (1996)

    Article  CAS  Google Scholar 

  • P.S.J. Russell: Photonic-crystal fibers, J. Lightwave Technol. 24(12), 4729 (2006)

    Article  Google Scholar 

  • M. Michieletto, J.K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, T.T. Alkeskjold: Hollow-core fibers for high power pulse delivery, Opt. Express 24(7), 7103 (2016)

    Article  CAS  Google Scholar 

  • P.S.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, J.C. Travers: Hollow-core photonic crystal fibres for gas-based nonlinear optics, Nat. Photonics 8, 278–286 (2014)

    Article  CAS  Google Scholar 

  • T. Ritari, J. Tuominen, H. Ludvigsen, J.C. Petersen, T. Sørensen, T.P. Hansen, H.R. Simonsen: Gas sensing using air-guiding photonic bandgap fibers, Opt. Express 12(17), 4080 (2004)

    Article  CAS  Google Scholar 

  • S. Février, D.D. Gaponov, P. Roy, M.E. Likhachev, S.L. Semjonov, M.M. Bubnov, E.M. Dianov, M.Y. Yashkov, V.F. Khopin, M.Y. Salganskii, A.N. Guryanov: High-power photonic-bandgap fiber laser, Opt. Lett. 33(9), 989 (2008)

    Article  Google Scholar 

  • J.-P. Yehouessi, O. Vanvincq, A. Cassez, M. Douay, Y. Quiquempois, G. Bouwmans, L. Bigot: Extreme large mode area in single-mode pixelated Bragg fiber, Opt. Express 24(5), 4761 (2016)

    Article  Google Scholar 

  • J. Marcou (Ed.): Plastic Optical Fibre, Practical Applications (Wiley, Chichester 1997)

    Google Scholar 

  • M. Saad: Heavy metal fluoride glass fibers and their applications. In: Proc. Asia Commun. Photonics, Conf (2011), https://doi.org/10.1117/12.915295

    Chapter  Google Scholar 

  • J.A. Harrington: Infrared Fibers and their Applications (SPIE, Bellingham 2004)

    Book  Google Scholar 

  • P. Toupin, L. Brilland, J. Trolès, J.-L. Adam: Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses, Opt. Mater. Express 2, 1359 (2012)

    Article  CAS  Google Scholar 

  • J. Trolès, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, E. Renversez, F. Smektala, M. El Amraoui, J.-L. Adam, T. Chartier, D. Mechin, L. Brilland: Low loss microstructered chalcogenide fibers for large non linear effects at 1995 nm, Opt. Express 18, 26647 (2010)

    Article  CAS  Google Scholar 

  • J. Trolès, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T.N. Nguyen, J.L. Adam, G. Renversez: Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization, Fiber Integr. Opt. 28(1), 11 (2009)

    Article  CAS  Google Scholar 

  • S.D. Le, M. Gay, L. Bramerie, T. Chartier, M. Thual, J.-C. Simon, L. Brilland, D. Méchin, P. Toupin, J. Trolès: All-optical time-domain demultiplexing of 170.8 Gbit/s signal in chalcogenide GeAsSe microstructured fibre, Electron. Lett. 49(2), 136 (2013)

    Article  CAS  Google Scholar 

  • U. Møller, Y. Yu, I. Kubat, C.R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Trolès, B. Luther-Davies, O. Bang: Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber, Opt. Express 23(3), 3282 (2015)

    Article  CAS  Google Scholar 

  • K.H. Tow, Y. Leguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, J. Trolès: Toward more coherent sources using a microstructured chalcogenide brillouin fiber laser, IEEE Photonics Technol. Lett. 25(3), 238 (2013)

    Article  CAS  Google Scholar 

  • C. Baker, M. Rochette: Highly nonlinear hybrid AsSe-PMMA microtapers, Opt. Express 18(12), 12391–12398 (2010)

    Article  CAS  Google Scholar 

  • K.T.V. Grattan, D.T. Sun: Fiber optic sensor technology: An overview, Sens. Actuators A 82, 40 (2000)

    Article  CAS  Google Scholar 

  • R. Kashyap: Fiber Bragg Gratings (Academic, Boston 1999)

    Google Scholar 

  • J. Hecht: City of Light: The Story of Fiber Optics (Oxford Univ. Press, Oxford 1999)

    Google Scholar 

  • T.H. Maiman: Stimulated optical radiation in ruby, Nature 187, 493 (1960)

    Article  Google Scholar 

  • R.N. Hall, G.E. Fenner, J.D. Kingsley, T.J. Soltys, R.O. Carlson: Coherent light emission from GaAs junctions, Phys. Rev. Lett. 9(9), 366 (1962)

    Article  CAS  Google Scholar 

  • K.C. Kao, G.A. Hockham: Dielectric-fibre surface waveguides for optical frequencies, Proc. IEEE 133, 191 (1966)

    Google Scholar 

  • F.P. Kapron, D.B. Keck, R.D. Maurer: Radiation losses in glass optical waveguides, Appl. Phys. Lett. 17, 423 (1970)

    Article  Google Scholar 

  • T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita: Ultimate low-loss single-mode fiber at 1.55 \(\upmu\)m, Electron. Lett. 15, 106 (1979)

    Article  CAS  Google Scholar 

  • R.J. Mears, L. Reekie, M. Jauncey, D.N. Payne: Low-noise erbium-doped fiber amplifier operating at 1.54 \(\upmu\)m, Electron. Lett. 26, 1026 (1987)

    Article  Google Scholar 

  • D.J. Richardson, J.M. Fini, L.E. Nelson: Space-division multiplexing in optical fibres, Nat. Photonics 7, 354 (2013)

    Article  CAS  Google Scholar 

  • E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, B.C. McCollum: Double-clad, offset-core Nd fiber laser. In: Optical Fiber Sensors, OSA Technical Digest Series, PD 5, Vol. 2 (Optical Society of America, New Orleans 1988)

    Google Scholar 

  • S. Yin, P.B. Ruffin, F.T.S. Yu (Eds.): Fiber Optic Sensors, 2nd edn. (CRC Press, Boca Raton 2008)

    Google Scholar 

  • H.C. Lefèvre: The Fiber-Optic Gyroscope, 2nd edn. (Artech House, Norwood 2014)

    Google Scholar 

  • A. Cusano, A. Cutolo, J. Albert (Eds.): Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science, Sharjah 2011)

    Google Scholar 

  • F. Charpentier, J. Trolès, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, C. Boussard-Plédel, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, B. Bureau: CO2 detection using microstructured chalcogenide fibers, Sens. Lett. 7(5), 745 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Margaux Barbier, Claire Le Page, Michel Joindot (University of Rennes 1, Enssat, France), and Irène Joindot for stimulating discussions and critical reading of the manuscript. The author would also like to thank Thierry Taunay (Photonics Bretagne, France) for his collaboration for writing Sect. 41.2.1 on the fabrication of optical fibers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Chartier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Chartier, T. (2019). Optical Fibers. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_41

Download citation

Publish with us

Policies and ethics