Skip to main content

Neutron and X-Ray Diffraction of Glass

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

A basic characterization of amorphous materials is usually obtained using diffraction measurements. Indeed, amorphicity is revealed by the absence of sharp Bragg peaks in the angular diffraction pattern, signaling the lack of long-range order and periodicity. However, diffraction patterns obtained by scattering from x-rays, electrons or neutrons contain much more structural information, often overlooked, about the atomic organization of disordered materials. X-ray and neutron diffraction are pioneering tools to get information on the atomic arrangements of noncrystalline materials, alongside the older x-ray diffraction investigations [30.1, 30.2, 30.3], which are still routinely used as structural experimental techniques.

The success of diffraction methods is partly due to the fact that they give the most direct access to the atomic structure (in particular interatomic distances and coordination numbers), and diffraction data can be easily compared to simulations, which is widely used to validate interatomic potentials in molecular dynamics. Another advantage of this technique is that it probes both the short- and intermediate-range order, being very sensitive to the nature and extent of disorder in glasses and liquids, and is an essential probe to understand the structural differences between glasses and their crystalline counterparts. Finally, various environments have been developed, allowing high temperature and/or high pressure measurements to be carried out.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • W.H. Zachariasen: The atomic arrangement in glass, J. Am. Ceram. Soc. 54, 3841–3851 (1932)

    CAS  Google Scholar 

  • B.E. Warren: The diffraction of x-rays in glass, Phys. Rev. B 45, 657–661 (1934)

    Article  CAS  Google Scholar 

  • B.E. Warren, J. Biscoe: Fourier analysis of x-ray patterns of soda-silica glass, J. Am. Ceram. Soc. 21, 259–265 (1938)

    Article  CAS  Google Scholar 

  • H.E. Fischer, A.C. Barnes, P.S. Salmon: Neutron and x-ray diffraction studies of liquids and glasses, Rep. Prog. Phys. 69, 233–299 (2006)

    Article  CAS  Google Scholar 

  • P. Chieux: Liquid structure investigation by neutron scattering. In: Neutron Diffraction, Topics in Current Physics, Vol. 6, ed. by H. Dachs (Springer, Berlin 1978)

    Chapter  Google Scholar 

  • G.L. Squires: Introduction to the Theory of Thermal Neutron Scattering (Cambridge Univ. Press, Cambridge 1978)

    Google Scholar 

  • A.C. Wright: The structure of amorphous solids by x-ray and neutron diffraction. In: Advances in Structure Reserach by Diffraction Methods, ed. by W. Hoppe, R. Mason (Vieweg, Bravnschweig 1974) pp. 1–84

    Google Scholar 

  • G. Placzek: The scattering of neutrons by systems of heavy nuclei, Phys. Rev. 86, 377–387 (1952)

    Article  CAS  Google Scholar 

  • J.E. Enderby: Structure by neutrons. In: Physics of Simple Liquids, ed. by H.N.V. Temperley, J.S. Rowlinson, G.S. Rushbrooke (North-Holland, Amsterdam 1968) pp. 612–644

    Google Scholar 

  • T.E. Faber, J.M. Ziman: A theory of the electrical properties of liquid metals III. The resistivity of binary alloys, Philos. Mag. 11, 153–157 (1965)

    Article  CAS  Google Scholar 

  • V.F. Sears: Neutron scattering lengths and cross sections, Neutron News 3, 26–37 (1992)

    Article  Google Scholar 

  • A.J. Dianoux, G. Lander: Neutron Data Booklet (Old City, Philadelphia 2003)

    Google Scholar 

  • A. Thompson, D. Attwood, E. Gullikson, M. Howells, K.-J. Kim, J. Kirz, J. Kortright, I. Lindau, Y. Liu, P. Pianetta, A. Robinson, J. Scofield, J. Underwood, G. Willams, H. Winick: X-Ray Data Booklet (Lawrence Berkeley National Laboratory, Berkeley 2009), LBNL/PUB-490 Rev. 3

    Google Scholar 

  • D. Waasmaier, A. Kirfel: New analytical scattering-factor functions for free atoms and ions, Acta Crystallogr. A 51, 416–431 (1995), https://doi.org/10.1107/S0108767394013292

    Article  Google Scholar 

  • M.C. Wilding, C.J. Benmore: Structure of glasses and melts, Rev. Mineral. Geochem. 63, 275–311 (2006), https://doi.org/10.2138/rmg.2006.63.12

    Article  CAS  Google Scholar 

  • A.B. Bhatia, D.E. Thornton: Structural aspects of the electrical resistivity of binary alloys, Phys. Rev. B 2, 3004–3012 (1970), https://doi.org/10.1103/PhysRevB.2.3004

    Article  Google Scholar 

  • P.S. Salmon: The structure of tetrahedral network glass forming systems at intermediate and extended length scales, J. Phys. Condens. Matter 19, 455208 (2007), https://doi.org/10.1088/0953-8984/19/45/455208

    Article  CAS  Google Scholar 

  • P.S. Salmon, R.A. Martin, P.E. Mason, G.J. Cuello: Topological versus chemical order in network glasses at intermediate and extended length scales, Nature 435, 75–78 (2005)

    Article  CAS  Google Scholar 

  • P.S. Salmon, A.C. Barnes, R.A. Martin, G.J. Cuello: Structure of glassy GeO2, J. Phys. Condens. Matter 19, 415110 (2007)

    Article  CAS  Google Scholar 

  • P. Debye: Zerstreuung von Röntgenstrahlen, Ann. Phys. 351, 809–823 (1915), https://doi.org/10.1002/andp.19153510606

    Article  Google Scholar 

  • P.H. Gaskell, A. Saeed, P. Chieux, D.R. McKenzie: Neutron-scattering studies of the structure of highly tetrahedral amorphous diamond like carbon, Phys. Rev. Lett. 67, 1286–1289 (1991)

    Article  CAS  Google Scholar 

  • L. Cormier, D.R. Neuville, G. Calas: Structure and properties of low-silica calcium aluminosilicate glasses, J. Non-Cryst. Solids 274, 110–114 (2000)

    Article  CAS  Google Scholar 

  • D.A. Keen: A comparison of various commonly used correlation functions for desribing total scattering, J. Appl. Crystallogr. 34, 172–175 (2001)

    Article  CAS  Google Scholar 

  • V. Petkov, S.J.L. Billinge, S.D. Shastri, B. Himmel: Polyhedral units and network connectivity in calcium aluminosilicate glasses from high-energy x-ray diffraction, Phys. Rev. Lett. 85, 3436–3439 (2000)

    Article  CAS  Google Scholar 

  • U. Hoppe, G. Walter, R. Kranold, D. Stachel: Structural specifics of phosphate glasses probed by diffraction methods: A review, J. Non-Cryst. Solids 263/264, 29–47 (2000)

    Article  Google Scholar 

  • J. Waser, V. Schomaker: The Fourier inversion of diffraction data, Rev. Mod. Phys. 25, 671–690 (1953), https://doi.org/10.1103/RevModPhys.25.671

    Article  CAS  Google Scholar 

  • E. Lorch: Neutron diffraction by germania, silica and radiation-damaged silica glasses, J. Phys. C 2, 229–237 (1969)

    Article  Google Scholar 

  • A.K. Soper, E.R. Barney: Extracting the pair distribution function from white-beam x-ray total scattering data, J. Appl. Crystallogr. 44, 714–726 (2011), https://doi.org/10.1107/S0021889811021455

    Article  CAS  Google Scholar 

  • L.B. Skinner, A.C. Barnes, P.S. Salmon, L. Hennet, H.E. Fischer, C.J. Benmore, S. Kohara, J.K.R. Weber, A. Bytchkov, M.C. Wilding, J.B. Parise, T.O. Farmer, I. Pozdnyakova, S.K. Tumber, K. Ohara: Joint diffraction and modeling approach to the structure of liquid alumina, Phys. Rev. B 87, 24201 (2013)

    Article  CAS  Google Scholar 

  • B.H. Toby, T. Egami: Accuracy of pair distribution function analysis applied to crystalline and non-crystalline materials, Acta Crystallogr. A 48, 336–346 (1992), https://doi.org/10.1107/S0108767391011327

    Article  Google Scholar 

  • T. Proffen: Analysis of disordered materials using total scattering and the atomic pair distribution function, Rev. Mineral. Geochem. 63, 255–274 (2006), https://doi.org/10.2138/rmg.2006.63.11

    Article  CAS  Google Scholar 

  • A.C. Hannon, W.S. Howells, A.K. Soper: ATLAS: A suite of programs for the analysis of time-of-flight neutron diffraction data from liquid and amorphous samples, Inst. Phys. Conf. Ser. 107, 193–211 (1990)

    Google Scholar 

  • J. Krogh-Moe: A method for converting experimental x-ray intensities to an absolute scale, Acta Crystallogr. 9, 951–953 (1956), https://doi.org/10.1107/S0365110X56002655

    Article  CAS  Google Scholar 

  • C.J. Benmore, A.K. Soper: The SANDALS Manual: A Guide to Performing Experiments on the Small Angle Neutron Diffractometer for Amorphous and Liquid Samples at ISIS (CLRC, Chilton 1998) p. RAL-TR-98-006, Version 1.0

    Google Scholar 

  • M.A. Howe, R.L. McGreevy, P. Zetterström: CORRECT: A Correction Program for Neutron Diffraction Data, NFL Studsvik internal report (NFL Uppsala University, Nyköping 1996)

    Google Scholar 

  • P. Juhás, T. Davis, C.L. Farrow, S.J.L. Billinge: PDFgetX3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions, J. Appl. Crystallogr. 46, 560–566 (2013), https://doi.org/10.1107/S0021889813005190

    Article  CAS  Google Scholar 

  • J. Swenson, A. Matic, C. Karlsson, L. Börjesson, C. Meneghini, W.S. Howells: Random ion distribution model: A structural approach to the mixed-alkali effect in glasses, Phys. Rev. B (2001), https://doi.org/10.1103/PhysRevB.63.132202

    Article  Google Scholar 

  • J. Swenson, A. Matic, C. Gejke, L. Börjesson, W.S. Howells, M.J. Capitan: Conductivity enhancement in PbI2-AgI-AgPO3 glasses by diffraction experiments and reverse Monte Carlo modeling, Phys. Rev. B 60, 12023–12032 (1999)

    Article  CAS  Google Scholar 

  • J. Swenson, L. Börjesson, W.S. Howells: Structure of borate glasses from neutron-diffraction experiments, Phys. Rev. B 52, 9310–9319 (1995)

    Article  CAS  Google Scholar 

  • J. Swenson, L. Börjesson, W.S. Howells: Structure of fast-ion conducting lithium and sodium borate glasses by neutron diffraction and reverse Monte Carlo simulations, Phys. Rev. B 57, 13514–13526 (1998)

    Article  CAS  Google Scholar 

  • L. Cormier, G. Calas, S. Creux, P.H. Gaskell, B. Bouchet-Fabre, A.C. Hannon: Environment around strontium in silicate and aluminosilicate glasses, Phys. Rev. B 59, 13517–13520 (1999), https://doi.org/10.1103/PhysRevB.59.13517

    Article  CAS  Google Scholar 

  • A.C. Wright: Neutron scattering from vitreous silica. V. The structure of vitreous silica: What have we learned from 60 years of diffraction studies?, J. Non-Cryst. Solids 179, 84–115 (1994)

    Article  CAS  Google Scholar 

  • A.C. Wright, A.J. Leadbetter: Diffraction studies of glass structure, Phys. Chem. Glasses 17, 122–145 (1976)

    CAS  Google Scholar 

  • M. Guignard, L. Cormier, V. Montouillout, N. Menguy, D. Massiot, A.C. Hannon: Environment of titanium and aluminum in a magnesium alumino-silicate glass, J. Phys. Condens. Matter 21, 375107 (2009), https://doi.org/10.1088/0953-8984/21/37/375107

    Article  CAS  Google Scholar 

  • R.A. Martin, P.S. Salmon, H.E. Fischer, G.J. Cuello: Structure of dysprosium and holmium phosphate glasses by the method of isomorphic substitution in neutron diffraction, J. Phys. Condens. Matter 15, 8235–8252 (2003)

    Article  CAS  Google Scholar 

  • J.E. Enderby, D.M. North, P.A. Egelstaff: The partial structure factors of liquid Cu-Sn, Philos. Mag. 14, 961–970 (1966), https://doi.org/10.1080/14786436608244767

    Article  CAS  Google Scholar 

  • A. Zeidler, P.S. Salmon, H.E. Fischer, J.C. Neuefeind, J.M. Simonson, H. Lemmel, H. Rauch, T.E. Markland: Oxygen as a site specific probe of the structure of water and oxide materials, Phys. Rev. Lett. (2011), https://doi.org/10.1103/PhysRevLett.107.145501

    Article  Google Scholar 

  • A.C. Wright, A.C. Hannon, R.N. Sinclair, W.L. Johnson, M. Atzmon: The neutron diffraction double-null isotopic substitution technique, J. Phys. F 14, L201–L205 (1984)

    Article  CAS  Google Scholar 

  • J.E. Enderby, A.C. Barnes: Liquid semiconductors, Rep. Prog. Phys. 53, 85–179 (1990)

    Article  CAS  Google Scholar 

  • P.H. Fuoss, A. Bienenstock: X-ray anomalous scattering factors—Measurements and applications. In: Inner-Shell and X-Ray Physics of Atoms and Solids, ed. by D.J. Fabian, H. Kleinpoppen, L.M. Watson (Springer, Boston 1981) pp. 875–884

    Chapter  Google Scholar 

  • S. Kohara, H. Tajiri, C.H. Song, K. Ohara, L. Temleitner, K. Sugimito, A. Fujiwara, L. Pusztai, T. Usuki, S. Hosokawa, Y. Benino, N. Kitamura, K. Fukumi: Anomalous x-ray scattering studies of functional disordered materials, J. Phys. Conf. Ser. 502, 12014 (2014), https://doi.org/10.1088/1742-6596/502/1/012014

    Article  CAS  Google Scholar 

  • H. Schlenz, A. Kirfel, K. Schulmeister, N. Wartner, W. Mader, W. Raberg, K. Wandelt, C. Oligschleger, S. Bender, R. Franke, J. Hormes, W. Hoffbauer, V. Lansmann, M. Jansen, N. Zotov, C. Marian, H. Putz, J. Neuefeind: Structure analyses of Ba-silicate glasses, J. Non-Cryst. Solids 297, 37–54 (2001)

    Article  Google Scholar 

  • A.C. Wright, J.M. Cole, R.J. Newport, C.E. Fisher, S.J. Clarke, R.N. Sinclair, H.E. Fischer, G.J. Cuello: The neutron diffraction anomalous dispersion technique and its application to vitreous Sm2O3\(\cdot\)4P2O5, Nucl. Instrum. Methods Phys. Res. A 571, 622–635 (2007), https://doi.org/10.1016/j.nima.2006.11.045

    Article  CAS  Google Scholar 

  • S. Hosokawa, I. Oh, M. Sakurai, W.-C. Pilgrim, N. Boudet, J.-F. Bérar, S. Kohara: Anomalous x-ray scattering study of GexSe1-x glassy alloys across the stiffness transition composition, Phys. Rev. B (2011), https://doi.org/10.1103/PhysRevB.84.014201

    Article  Google Scholar 

  • P.H. Poole, P.F. McMillan, G.H. Wolf: Computer simulations of silicate melts, Rev. Mineral. Geochem. 32, 563–616 (1995)

    CAS  Google Scholar 

  • S. Jahn, P.M. Kowalski: Theoretical approaches to structure and spectroscopy of earth materials, Rev. Mineral. Geochem. 78, 691–743 (2014), https://doi.org/10.2138/rmg.2014.78.17

    Article  CAS  Google Scholar 

  • K. Vollmayr, W. Kob, K. Binder: Cooling-rate in amorphous silica: A computer-simulation study, Phys. Rev. B 54, 15808–15827 (1996)

    Article  CAS  Google Scholar 

  • V.K. Schiff: Computation simulation of ionic liquid transition into vitreous state by the Monte Carlo method, J. Non-Cryst. Solids 123, 36–41 (1990)

    Article  Google Scholar 

  • A.C. Wright: The comparison of molecular dynamics simulations with diffraction experiments, J. Non-Cryst. Solids 159, 264–268 (1993)

    Article  CAS  Google Scholar 

  • R.L. McGreevy: RMC—Progress, problems and prospects, Nucl. Instrum Methods Phys. Res. A 354, 1–16 (1995)

    Article  CAS  Google Scholar 

  • R.L. Mc Greevy, P. Zetterström: Reverse Monte Carlo modelling of network glasses: Useful or useless?, J. Non-Cryst. Solids 293–295, 297–303 (2001)

    Article  Google Scholar 

  • M. Guignard, L. Cormier: Environments of Mg and Al in MgO-Al2O3-SiO2 glasses: A study coupling neutron and x-ray diffraction and reverse Monte Carlo modeling, Chem. Geol. 256, 111–118 (2008)

    Article  CAS  Google Scholar 

  • L. Cormier, G.J. Cuello: Mg coordination in a MgSiO3 glass using neutron diffraction coupled with isotopic substitution, Phys. Rev. B 83, 224204 (2011), https://doi.org/10.1103/PhysRevB.83.224204

    Article  CAS  Google Scholar 

  • O. Gereben, P. Jovari, L. Temleitner, L.T. Pustzai: A new version of the RMC++ reverse Monte Carlo programme, aimed at investigating the structure of covalent glasses, J. Optoelectron. Adv. Mater. 9, 3021–3027 (2007)

    CAS  Google Scholar 

  • O. Gereben, L. Pusztai: RMC_POT: A computer code for reverse Monte Carlo modeling the structure of disordered systems containing molecules of arbitrary complexity, J. Comput. Chem. 33, 2285–2291 (2012), https://doi.org/10.1002/jcc.23058

    Article  CAS  Google Scholar 

  • M.T. Dove, M.G. Tucker, D.A. Keen: Neutron total scattering method: Simultaneous determination of long-range and short-range order in disordered materials, Eur. J. Mineral. 14, 331–348 (2002), https://doi.org/10.1127/0935-1221/2002/0014-0331

    Article  CAS  Google Scholar 

  • J.-M. Delaye, L. Cormier, D. Ghaleb, G. Calas: Investigation of multicomponent silicate glasses by coupling WAXS and molecular dynamics, J. Non-Cryst. Solids 293–295, 290–296 (2001)

    Article  Google Scholar 

  • L. Cormier, D. Ghaleb, D.R. Neuville, J.M. Delaye, G. Calas: Chemical dependence of network topology of calcium aluminosilicate glasses: A molecular dynamics and reverse Monte Carlo study, J. Non-Cryst. Solids 332, 255–270 (2003)

    Article  CAS  Google Scholar 

  • D. Miracle: A structural model for metallic glasses, Nat. Mater. 3, 697–702 (2004)

    Article  CAS  Google Scholar 

  • H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma: Atomic packing and short-to-medium-range order in metallic glasses, Nature 439, 419–425 (2006)

    Article  CAS  Google Scholar 

  • J. Hwang, Z.H. Melgarejo, Y.E. Kalay, I. Kalay, M.J. Kramer, D.S. Stone, P.M. Voyles: Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass, Phys. Rev. Lett. 108, 195505 (2012)

    Article  CAS  Google Scholar 

  • A.K. Soper: Partial structure factors from disordered materials diffraction data: An approach using empirical potential structure refinement, Phys. Rev. B 72, 104204 (2005)

    Article  CAS  Google Scholar 

  • J.L. Finney, A. Hallbrucker, I. Kohl, A.K. Soper, D.T. Bowron: Structures of high and low density amorphous ice by neutron diffraction, Phys. Rev. Lett. (2002), https://doi.org/10.1103/PhysRevLett.88.225503

    Article  Google Scholar 

  • A. Zeidler, P.S. Salmon: Pressure-driven transformation of the ordering in amorphous network-forming materials, Phys. Rev. B (2016), https://doi.org/10.1103/PhysRevB.93.214204

    Article  Google Scholar 

  • M.T.M. Shatnawi: The first sharp diffraction peak in the total structure function of amorphous chalcogenide glasses: Anomalous characteristics and controversial views, New J. Glass Ceram. 6, 37–46 (2016), https://doi.org/10.4236/njgc.2016.63005

    Article  CAS  Google Scholar 

  • M. Guthrie, C.A. Tulk, C.J. Benmore, J. Xu, J.L. Yarger, D.D. Klug, J.S. Tse, H. Mao, R.J. Hemley: Formation and structure of a dense octahedral glass, Phys. Rev. Lett. (2004), https://doi.org/10.1103/PhysRevLett.93.115502

    Article  Google Scholar 

  • K. Tanaka: Pressure dependence of the first sharp diffraction peak in chalcogenide and oxide glasses, Philos. Mag. Lett. 57, 183–187 (1988)

    Article  CAS  Google Scholar 

  • H. Tsutsu, K. Tamura, H. Endo: Photodarkening in glassy As2S3 under pressure, Solid State Commun. 52, 877–879 (1984)

    Article  CAS  Google Scholar 

  • H.B. Lou, Y.K. Fang, Q.S. Zeng, Y.H. Lu, X.D. Wang, Q.P. Cao, K. Yang, X.H. Yu, L. Zheng, Y.D. Zhao, W.S. Chu, T.D. Hu, Z.Y. Wu, R. Ahuja, J.Z. Jiang: Pressure-induced amorphous-to-amorphous configuration change in Ca-Al metallic glasses, Sci. Rep. 2, 376 (2012), https://doi.org/10.1038/srep00376

    Article  CAS  Google Scholar 

  • S. Susman, K.J. Volin, D.G. Montague, D.L. Price: Temperature dependence of the first sharp diffraction peak in vitreous silica, Phys. Rev. B 43, 11076–11081 (1991)

    Article  CAS  Google Scholar 

  • L.E. Busse: Temperature dependence of the structure of As2Se3 and AsxS1-x glasses near the glass transition, Phys. Rev. B 29, 3639–3651 (1984)

    Article  CAS  Google Scholar 

  • L.E. Busse, S.R. Nagel: Temperature dependence of the structure factor of As2Se3 glass up to the glass transition, Phys. Rev. Lett. 47, 1848–1851 (1981)

    Article  CAS  Google Scholar 

  • O. Majérus, L. Cormier, G. Calas, B. Beuneu: A neutron diffraction study of temperature-induced structural changes in potassium disilicate glass and melt, Chem. Geol. 213, 89–102 (2004)

    Article  CAS  Google Scholar 

  • M.J. Duarte, P. Bruna, E. Pineda, D. Crespo, G. Garbarino, R. Verbeni, K. Zhao, W.H. Wang, A.H. Romero, J. Serrano: Polyamorphic transitions in Ce-based metallic glasses by synchrotron radiation, Phys. Rev. B 84, 224116 (2011)

    Article  CAS  Google Scholar 

  • J. Kang, J. Zhu, S.-H. Wei, E. Schwegler, Y.-H. Kim: Persistent medium-range order and anomalous liquid properties of Al1-xCux alloys, Phys. Rev. Lett. 108, 115901 (2012)

    Article  CAS  Google Scholar 

  • G. Li, Y.Y. Wang, P.K. Liaw, Y.C. Li, R.P. Liu: Electronic structure inheritance and pressure-induced polyamorphism in lanthanide-based metallic glasses, Phys. Rev. Lett. 109, 125501 (2012)

    Article  CAS  Google Scholar 

  • M. Misawa, D.L. Price, K. Suzuki: The short range order structure of alkali disilicate glasses by pulsed neutron total scattering, J. Non-Cryst. Solids 37, 85–97 (1980)

    Article  CAS  Google Scholar 

  • A.C. Hannon, D. Di Martino, L.F. Santos, R.M. Almeida: Ge-O coordination in cesium germanate glasses, J. Phys. Chem. B 111, 3324–3354 (2007)

    Article  CAS  Google Scholar 

  • E. Bychkov, C.J. Benmore, D.L. Price: Compositional changes of the first sharp diffraction peak in binary selenide glasses, Phys. Rev. B 72, 172107 (2005)

    Article  CAS  Google Scholar 

  • E.A. Chechetkina: Is there a relation between glass-forming ability and first sharp diffraction peak, J. Phys. Condens. Matter 7, 3099–3114 (1995)

    Article  Google Scholar 

  • J. Du, L.R. Corrales: Compositional dependence of the first sharp diffraction peaks in alkali silicate glasses: A molecular dynamics study, J. Non-Cryst. Solids 352, 3255–3269 (2006)

    Article  CAS  Google Scholar 

  • M.T.M. Shatnawi, C.L. Farrow, P. Chen, P. Boolchand, A. Sartbaeva, M.F. Thorpe, S.J.L. Billinge: Search for a structural response to the intermediate phase in GexSe1-x glasses, Phys. Rev. B (2008), https://doi.org/10.1103/PhysRevB.77.094134

    Article  Google Scholar 

  • M. Wilson, P.S. Salmon: Network topology and the fragility of tetrahedral glass-forming liquids, Phys. Rev. Lett. 103, 157801 (2009)

    Article  CAS  Google Scholar 

  • I. Petri, P.S. Salmon, H.E. Fischer: Defects in a disordered world: The structure of glassy GeSe2, Phys. Rev. Lett. 84, 2413–2416 (2000), https://doi.org/10.1103/PhysRevLett.84.2413

    Article  CAS  Google Scholar 

  • I.T. Penfold, P.S. Salmon: Structure of covalently bonded glass-forming melts: A full partial-structure-factor analysis of liquid GeSe2, Phys. Rev. Lett. 67, 97–101 (1991)

    Article  CAS  Google Scholar 

  • A.K. Soper: Network structure and concentration fluctuations in a series of elemental, binary, and tertiary liquids and glasses, J. Phys. Condens. Matter 22, 404210 (2010)

    Article  CAS  Google Scholar 

  • D.L. Price, S.C. Moss, R. Reijers, M.L. Saboungi, S. Susman: Intermediate-range order in glasses and liquids, J. Phys. C 21, L1069–L1072 (1988)

    Article  Google Scholar 

  • S.R. Elliott: The origin of the first sharp peak in the structure factor of covalent glasses and liquids, J. Phys. Condens. Matter 4, 7661–7678 (1992)

    Article  CAS  Google Scholar 

  • E.A. Chechetkina: Medium-range order in amorphous substances: A modified layer model, Solid State Commun. 91, 101–104 (1994)

    Article  CAS  Google Scholar 

  • P.H. Gaskell, D.J. Wallis: Medium range order in silica, the canonical network glass, Phys. Rev. Lett. 76, 66–69 (1996)

    Article  CAS  Google Scholar 

  • J.C. Phillips: Topology of caovalent non-crystalline solids II. MRO in chalcogenide alloys and a-Si(Ge), J. Non-Cryst. Solids 43, 37–77 (1981)

    Article  CAS  Google Scholar 

  • J.C. Phillips, C.A. Beevers, S.E.B. Gould: Molecular structure of As2Se3 glass, Phys. Rev. B 21, 5274–5731 (1980)

    Article  Google Scholar 

  • L. Cervinka: Medium range ordering in non-crystalline solids, J. Non-Cryst. Solids 90, 371–382 (1987)

    Article  CAS  Google Scholar 

  • T. Uchino, J.D. Harrop, S.N. Taraskin, S.R. Elliott: Real and reciprocal space structural correlations contributing to the first sharp diffraction peak in silica glass, Phys. Rev. B 71, 14202-1–14202-5 (2005)

    Article  CAS  Google Scholar 

  • A. Le Bail: Modelling the silica glass structure by the Rietveld method, J. Non-Cryst. Solids 183, 39–42 (1995), https://doi.org/10.1016/0022-3093(94)00664-4

    Article  Google Scholar 

  • M. Wilson, P.A. Madden: “Prepeaks” and “first sharp diffraction peaks” in computer simulations of strong and fragile ionic liquids, Phys. Rev. Lett. 72, 3033–3036 (1994)

    Article  CAS  Google Scholar 

  • R. Fayos, F.J. Bermejo, J. Dawidowski, H.E. Fischer, M.A. González: Direct experimental evidence of the relationship between intermediate-range order in topologically disordered matter and discernible features in the static structure factor, Phys. Rev. Lett. 77, 3823–3826 (1996)

    Article  CAS  Google Scholar 

  • P.H. Gaskell: Relationships between the medium-range structure of glasses and crystals, Mineral. Mag. 64, 425–434 (2000)

    Article  CAS  Google Scholar 

  • M. Misawa: Structure factor of X4 tetrahedral molecular liquids: Competition between intramolecular and intermolecular atomic spacings, J. Chem. Phys. 93, 6774–6778 (1990)

    Article  CAS  Google Scholar 

  • J. Dixmier: Hole generation of prepeaks in diffraction patterns of glasses, J. Phys. I 2, 1011–1027 (1992), https://doi.org/10.1051/jp1:1992188

    Article  CAS  Google Scholar 

  • J. Blétry: Sphere and distance models for binary disordered systems, Philos. Mag. B 62, 469–508 (1990), https://doi.org/10.1080/13642819008215248

    Article  Google Scholar 

  • S.R. Elliott: Origin of the first sharp diffraction peak in the structure factor of covalent glasses, Phys. Rev. Lett. 67, 711–714 (1991)

    Article  CAS  Google Scholar 

  • S. Veprek, H.U. Beyeler: On the interpretation of the first, sharp maximum in the x-ray scattering of non-crystalline solids and liquids, Philos. Mag. 44, 557–567 (1981)

    Article  CAS  Google Scholar 

  • S.R. Elliott: Medium-range structural order in covalent amorphous solids, Nature 354, 445–452 (1991)

    Article  CAS  Google Scholar 

  • S.R. Elliott: Second sharp diffraction peak in the structure factor of binary covalent network glasses, Phys. Rev. B 51, 8599–8601 (1995)

    Article  CAS  Google Scholar 

  • A. Guinier: X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (Dover, New York 1994)

    Google Scholar 

  • P. Ehrenfest: On interference phenomena to be expected when Röntgen rays pass through a di-atomic gas, Proc. KNAW 17, 1184–1190 (1915)

    Google Scholar 

  • A.R. Yavari, A.L. Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M.D. Michiel, Å. Kvick: Excess free volume in metallic glasses measured by x-ray diffraction, Acta Mater. 53, 1611–1619 (2005), https://doi.org/10.1016/j.actamat.2004.12.011

    Article  CAS  Google Scholar 

  • D. Ma, A.D. Stoica, X.-L. Wang: (2009) Power-law scaling and fractal nature of medium-range order in metallic glasses, Nat. Mater. 8, 30–34 (2009), https://doi.org/10.1038/nmat2340

    Article  CAS  Google Scholar 

  • A.C. Hannon, D.I. Grimley, R.A. Hulme, A.C. Wright, R.N. Sinclair: Boroxol groups in vitreous boron oxide: New evidence from neutron diffraction and inelastic neutron scattering studies, J. Non-Cryst. Solids 177, 299–316 (1994)

    Article  CAS  Google Scholar 

  • M. Misawa: Structure of vitreous and molten B2O3 measured by pulsed neutron total scattering, J. Non-Cryst. Solids 122, 33–40 (1990)

    Article  CAS  Google Scholar 

  • J. Swenson, A. Matic, C. Gejke, L. Börjesson, W.S. Howells, M.J. Capitan: Conductivity enhancement in PbI2-AgI-AgPO3 glasses by diffraction experiments and reverse Monte Carlo modeling, Phys. Rev. B 60, 12023–12032 (1999), https://doi.org/10.1103/PhysRevB.60.12023

    Article  CAS  Google Scholar 

  • P.S. Salmon, I. Petri: Structure of glassy and liquid GeSe2, J. Phys. Condens. Matter 15, S1509 (2003)

    Article  CAS  Google Scholar 

  • C.J. Benmore, P.S. Salmon: Structure of fast ion conducting and semiconducting glassy chalcogenide alloys, Phys. Rev. Lett. 73, 264–267 (1994), https://doi.org/10.1103/PhysRevLett.73.264

    Article  CAS  Google Scholar 

  • J. Liu, P.S. Salmon: Structural ordering in Ag-based ternary chalcogenide glasses, Europhys. Lett. 39, 521 (1997)

    Article  CAS  Google Scholar 

  • P.S. Salmon, S. Xin: Chalcogenide glasses: The effect of covalent versus ionic bonding in (CuI)0.6(Sb2Se3)0.4, Phys. Rev. B 65, 64202-1–64202-4 (2002)

    Article  CAS  Google Scholar 

  • J.H. Lee, A. Pradel, G. Taillades, M. Ribes, S.R. Elliott: Structural studies of glassy (Li2S)0.5(SiS2)0.5 by isotopic-substitution neutron diffraction, Phys. Rev. B 56, 10934–10941 (1997), https://doi.org/10.1103/PhysRevB.56.10934

    Article  CAS  Google Scholar 

  • L. Cormier, S. Creux, L. Galoisy, G. Calas, P.H. Gaskell: Medium range order around cations in silicate glasses, Chem. Geol. 128, 77–91 (1996)

    Article  CAS  Google Scholar 

  • L. Cormier, P.H. Gaskell, G. Calas, A.K. Soper: Medium range order around titanium in a silicate glass studied by neutron diffraction with isotopic substitution, Phys. Rev. B 58, 11322–11330 (1998)

    Article  CAS  Google Scholar 

  • F. Farges, G.E. Brown Jr., A. Navrotsky, H. Gan, J.J. Rehr: Coordination chemistry of Ti(IV) in silicate glasses and melts. II. Glasses at ambient temperature and pressure, Geochim. Cosmochim. Acta 60, 3039–3053 (1996)

    Article  CAS  Google Scholar 

  • L. Cormier, G. Calas, P.H. Gaskell: Cationic environment in silicate glasses studied by neutron diffraction with isotopic substitution, Chem. Geol. 174, 349–363 (2001), https://doi.org/10.1016/S0009-2541(00)00325-9

    Article  CAS  Google Scholar 

  • P.H. Gaskell, Z. Zhao, G. Calas, L. Galoisy: The structure of mixed cation oxide glasses. In: The Physics of Non-Crystalline Solids, ed. by L.D. Pye, W.C. LaCourse, H.J. Stevens (Taylor Francis, London 1992) pp. 53–58

    Google Scholar 

  • L. Cormier, P.H. Gaskell, G. Calas, J. Zhao, A.K. Soper: Environment around Li in the LiAlSiO4 ionic conductor glass: A neutron-scattering and reverse Monte Carlo study, Phys. Rev. B 57, R8067–R8070 (1998), https://doi.org/10.1103/PhysRevB.57.R8067

    Article  CAS  Google Scholar 

  • J. Zhao, P.H. Gaskell, M.M. Cluckie, A.K. Soper: A neutron diffraction, isotopic substitution study of the structure of Li2O\(\cdot\)2SiO2 glass, J. Non-Cryst. Solids 234, 721–727 (1998)

    Article  Google Scholar 

  • H. Uhlig, M.J. Hoffmann, H.P. Lamparter, F. Aldinger, R. Bellissent, S. Steeb: Short-range order and medium-range order in lithium silicate glasses, Part I: Diffraction experiments and results, J. Am. Ceram. Soc. 79, 2833–2838 (1996)

    Article  CAS  Google Scholar 

  • M.C. Eckersley, P.H. Gaskell, A.C. Barnes, P. Chieux: Structural ordering in a calcium silicate glass, Nature 335, 525–527 (1988)

    Article  CAS  Google Scholar 

  • S. Creux, B. Bouchet-Fabre, P.H. Gaskell: Anomalous wide angle x-ray scattering study of strontium silicate and aluminosilicate glasses, J. Non-Cryst. Solids 192/193, 360–363 (1995)

    Article  Google Scholar 

  • P.H. Gaskell, M.C. Eckersley, A.C. Barnes, P. Chieux: Medium-range order in the cation distribution of a calcium silicate glass, Nature 350, 675–677 (1991)

    Article  CAS  Google Scholar 

  • L. Cormier, L. Galoisy, J.M. Delaye, D. Ghaleb, G. Calas: Short- and medium-range structural order around cations in glasses: A multidisciplinary approach, C.R. Phys. 2, 249–262 (2001)

    CAS  Google Scholar 

  • B.E. Warren, A.G. Pincus: Atomic consideration of immiscibility in glass system, J. Am. Ceram. Soc. 23, 301–304 (1940), https://doi.org/10.1111/j.1151-2916.1940.tb14194.x

    Article  CAS  Google Scholar 

  • G.N. Greaves, S. Sen: Inorganic glasses, glass-forming liquids and amorphizing solids, Adv. Phys. 56, 1–166 (2007)

    Article  CAS  Google Scholar 

  • G.N. Greaves: EXAFS, glass structure and diffusion, Philos. Mag. B 60, 793–800 (1989)

    Article  CAS  Google Scholar 

  • S. Block, G.J. Piermarini: Alkaline earth cation distribution in vitreous borates, Phys. Chem. Glasses 5, 138–144 (1964)

    Google Scholar 

  • I. Yasui, H. Hasegawa, Y. Suito: Structure of borate glasses containing Tl and Ba oxide, J. Non-Cryst. Solids 106, 30–33 (1988)

    Article  CAS  Google Scholar 

  • I. Yasui, H. Hasegawa, Y. Saito, Y. Akasaka: Structure of borate glasses containing heavy metal ions, J. Non-Cryst. Solids 123, 71–74 (1990)

    Article  CAS  Google Scholar 

  • C. Brosset: X-ray investigation of the distribution of heavy atoms in glass, Phys. Chem. Glasses 4, 99–102 (1963)

    CAS  Google Scholar 

  • C.D. Hanson, T. Egami: Distribution of Cs+ ions in single and mixed alkali silicate glasses from energy dispersive x-ray diffraction, J. Non-Cryst. Solids 87, 171–184 (1986)

    Article  CAS  Google Scholar 

  • J. Krogh-Moe: An x-ray study of barium borate glasses, Phys. Chem. Glasses 3, 208–212 (1962)

    CAS  Google Scholar 

  • M.C. Abramo, C. Caccamo, G. Pizzimenti: Structural properties and medium-range order in calcium-metasilicate (CaSiO3) glass: A molecular dynamics study, J. Chem. Phys. 96, 9083–9091 (1992)

    Article  CAS  Google Scholar 

  • L. Cormier, G. Calas, P.H. Gaskell: A reverse Monte Carlo study of a titanosilicate glass, J. Phys. Condens. Matter. 9, 10129–10136 (1997)

    Article  CAS  Google Scholar 

  • L. Cormier, G. Calas, S. Creux, P.H. Gaskell, B. Bouchet-Fabre, A.C. Hannon: Environment around strontium in silicate and aluminosilicate glasses, Phys. Rev. B 59, 13517–13520 (1999)

    Article  CAS  Google Scholar 

  • Y. Waseda, H. Suito: The structure of molten alkali metal silicates, Trans. Iron Steel Inst. Jpn. 17, 82–91 (1977)

    Google Scholar 

  • Y. Waseda: The Structure of Non-Crystalline Materials (McGraw-Hill, New York 1980)

    Google Scholar 

  • L. Hennet, V. Cristiglio, J. Kozaily, I. Pozdnyakova, H.E. Fischer, A. Bytchkov, J.W.E. Drewitt, M. Leydier, D. Thiaudière, S. Gruner, S. Brassamin, D. Zanghi, G.J. Cuello, M. Koza, S. Magazù, G.N. Greaves, D.L. Price: Aerodynamic levitation and laser heating: Applications at synchrotron and neutron sources, Eur. Phys. J. Spec. Top. 196, 151–165 (2011), https://doi.org/10.1140/epjst/e2011-01425-0

    Article  Google Scholar 

  • G. Jacobs, I. Egry, K. Maier, D. Platzek, J. Reske, R. Frahm: Extended x-ray-absorption fine structure studies of levitated undercooled metallic melts, Rev. Sci. Instrum. 67, 3683 (1996), https://doi.org/10.1063/1.1146855

    Article  CAS  Google Scholar 

  • P.-F. Paradis, T. Ishikawa, J. Yu, S. Yoda: Hybrid electrostatic–aerodynamic levitation furnace for the high-temperature processing of oxide materials on the ground, Rev. Sci. Instrum. 72, 2811 (2001), https://doi.org/10.1063/1.1368860

    Article  CAS  Google Scholar 

  • E.H. Trinh: Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity, Rev. Sci. Instrum. 56, 2059 (1985), https://doi.org/10.1063/1.1138419

    Article  CAS  Google Scholar 

  • P.H. Haumesser, J.P. Garandet, J. Brancillon, M. Daniel, I. Campbell, P. Jackson: High temperature viscosity measurements by the gas film levitation technique: Application to various types of materials, Int. J. Thermophys. 23, 1217–1228 (2002)

    Article  CAS  Google Scholar 

  • C. Landron, L. Hennet, J.P. Coutures, M. Gailhanou, M. Gramond, J.F. Berar: Contactless investigation on laser-heated oxides by synchrotron radiation, Europhys. Lett. 44, 429–435 (1998), https://doi.org/10.1209/epl/i1998-00490-0

    Article  CAS  Google Scholar 

  • C. Landron, L. Hennet, T.E. Jenkins, G.N. Greaves, J.P. Coutures, A.K. Soper: Liquid alumina: Detailed atomic coordination determined from neutron diffraction data using empirical potential structure refinement, Phys. Rev. Lett. 86, 4839–4842 (2001)

    Article  CAS  Google Scholar 

  • D.L. Price: High-Temperature Levitated Materials (Cambridge Univ. Press, Cambridge 2010)

    Book  Google Scholar 

  • L. Cormier, G. Calas, B. Beuneu: Structural changes between soda-lime silicate glass and melt, J. Non-Cryst. Solids 357, 926–931 (2011), https://doi.org/10.1016/j.jnoncrysol.2010.10.014

    Article  CAS  Google Scholar 

  • S. Ansell, S. Krishnan, J.K. Weber, J.F. Felten, P.C. Nordine, M.A. Beno, D.L. Price, M.L. Saboungi: Structure of liquid aluminium oxide, Phys. Rev. Lett. 78, 464–466 (1997)

    Article  CAS  Google Scholar 

  • J.W.E. Drewitt, S. Jahn, V. Cristiglio, A. Bytchkov, M. Leydier, S. Brassamin, H.E. Fischer, L. Hennet: The structure of liquid calcium aluminates as investigated using neutron and high energy x-ray diffraction in combination with molecular dynamics simulation methods, J. Phys. Condens. Matter 23, 155101 (2011)

    Article  CAS  Google Scholar 

  • V. Cristiglio, G.J. Cuello, L. Hennet, I. Pozdnyakova, M. Leydier, J. Kozaily, H.E. Fischer, M.R. Johnson, D.L. Price: Neutron diffraction study of molten calcium aluminates, J. Non-Cryst. Solids 356, 2492–2496 (2010), https://doi.org/10.1016/j.jnoncrysol.2010.03.027

    Article  CAS  Google Scholar 

  • Q. Mei, C.J. Benmore, J.K.R. Weber, M. Wilding, J. Kim, J. Rix: Diffraction study of calcium aluminate glasses and melts: II. High energy x-ray diffraction on melts, J. Phys. Condens. Matter 20, 245107 (2008), https://doi.org/10.1088/0953-8984/20/24/245107

    Article  CAS  Google Scholar 

  • A. Bytchkov: Structure et dynamique d'aluminates fondus et de verres Phosphore-Sélénium. Complémentarité de la résonance magnétique nucléaire et de la diffusion des rayons X et des neutrons, Ph.D. Thesis (Univ. Orléans, Orléans 2006)

    Google Scholar 

  • M.C. Wilding, M. Wilson, C.J. Benmore, J.K.R. Weber, P.F. McMillan: Structural changes in supercooled Al2O3–Y2O3 liquids, Phys. Chem. Chem. Phys. 15, 8589 (2013), https://doi.org/10.1039/c3cp51209f

    Article  CAS  Google Scholar 

  • M.C. Wilding, P.F. McMillan: Liquid polymorphism in yttrium-aluminate liquids. In: New Kinds of Phase Transitions: Transformations in Disordered Substances, ed. by V.V. Brazhkin, S.V. Buldyrev, V.N. Rhzhov, H.E. Stanley (Kluwer Academic, Dordrecht 2002) pp. 57–73

    Google Scholar 

  • M.C. Wilding, M. Wilson, P.F. McMillan: Structural studies and polyamorphism in amorphous solids and liquids at high pressure, Chem. Soc. Rev. 35, 964–986 (2006)

    Article  CAS  Google Scholar 

  • O. Majérus, L. Cormier, G. Calas, B. Beuneu: Temperature-induced boron coordination change in alkali borate glasses and melts, Phys. Rev. B 67, 24210-1–24210-7 (2003)

    Article  CAS  Google Scholar 

  • L. Hennet, D. Thiaudière, C. Landron, P. Melin, D.L. Price, J.-P. Coutures, J.-F. Bérar, M.-L. Saboungi: Melting behavior of levitated Y2O3, Appl. Phys. Lett. 83, 3305 (2003), https://doi.org/10.1063/1.1621090

    Article  CAS  Google Scholar 

  • J. Sakowski, G. Herms: The structure of vitreous and molten B2O3, J. Non-Cryst. Solids 293–295, 304–311 (2001)

    Article  Google Scholar 

  • L. Cormier, O. Majérus, D.R. Neuville, G. Calas: Temperature-induced structural modifications between alkali borate glasses and melts, J. Am. Ceram. Soc. 89, 13–19 (2006)

    Article  CAS  Google Scholar 

  • O. Majérus, L. Cormier, G. Calas, B. Beuneu: Modification of the structural role of lithium between lithium-diborate glasses and melts: Implications for transport properties and melt fragility, J. Phys. Chem. B 107, 13044–13050 (2003)

    Article  CAS  Google Scholar 

  • M.G. Tucker, M.T. Dove, D.A. Keen: Direct measurement of the thermal expansion of the SiO2 bond by neutron total scattering, J. Phys. Condens. Matter 12, L425–L430 (2000)

    Article  CAS  Google Scholar 

  • Q. Mei, C.J. Benmore, J.K.R. Weber: Structure of liquid SiO2: A measurment by high-energy x-ray diffraction, Phys. Rev. Lett. 98, 57802 (2007)

    Article  CAS  Google Scholar 

  • M.C. Wilding, C.J. Benmore, J.K.R. Weber: Changes in the local environment surrounding magnesium ions in fragile MgO-SiO2 liquids, Europhys. Lett. 89, 26005 (2010)

    Article  CAS  Google Scholar 

  • J.W.E. Drewitt, C. Sanloup, A. Bytchkov, S. Brassamin, L. Hennet: Structure of (FexCa1-xO)y(SiO2)1-y liquids and glasses from high-energy x-ray diffraction: Implications for the structure of natural basaltic magmas, Phys. Rev. B 87, 224201 (2013), https://doi.org/10.1103/PhysRevB.87.224201

    Article  CAS  Google Scholar 

  • C.J. Benmore, J.K.R. Weber, M.C. Wilding, J. Du, J.B. Parise: Temperature-dependent structural heterogeneity in calcium silicate liquids, Phys. Rev. B 82, 224202 (2010), https://doi.org/10.1103/PhysRevB.82.224202

    Article  CAS  Google Scholar 

  • L.B. Skinner, C.J. Benmore, J.K.R. Weber, S. Tumber, L. Lazareva, J. Neuefeind, L. Santodonato, J. Du, J.B. Parise: Structure of molten CaSiO3: Neutron diffraction isotope substitution with aerodynamic levitation and molecular dynamics study, J. Phys. Chem. B 116, 13439–13447 (2012), https://doi.org/10.1021/jp3066019

    Article  CAS  Google Scholar 

  • T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, D.M. Herlach: Icosahedral short-range order in deeply undercooled metallic melts, Phys. Rev. Lett. (2002), https://doi.org/10.1103/PhysRevLett.89.075507

    Article  Google Scholar 

  • D. Holland-Moritz, S. Stüber, H. Hartmann, T. Unruh, T. Hansen, A. Meyer: Structure and dynamics of liquid Ni36Zr64 studied by neutron scattering, Phys. Rev. B (2009), https://doi.org/10.1103/PhysRevB.79.064204

    Article  Google Scholar 

  • S. Gruner, J. Marczinke, L. Hennet, W. Hoyer, G.J. Cuello: On the atomic structure of liquid Ni–Si alloys: A neutron diffraction study, J. Phys. Condens. Matter 21, 385403 (2009), https://doi.org/10.1088/0953-8984/21/38/385403

    Article  CAS  Google Scholar 

  • K. Georgarakis, L. Hennet, G.A. Evangelakis, J. Antonowicz, G.B. Bokas, V. Honkimaki, A. Bytchkov, M.W. Chen, A.R. Yavari: Probing the structure of a liquid metal during vitrification, Acta Mater. 87, 174–186 (2015), https://doi.org/10.1016/j.actamat.2015.01.005

    Article  CAS  Google Scholar 

  • K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, M.B. Robinson, D.S. Robinson: First x-ray scattering studies on electrostatically levitated metallic liquids: Demonstrated influence of local icosahedral order on the nucleation barrier, Phys. Rev. Lett. 90, 195504 (2003)

    Article  CAS  Google Scholar 

  • J. Akola, R.O. Jones, S. Kohara, T. Usuki, E. Bychkov: Density variations in liquid tellurium: Roles of rings, chains, and cavities, Phys. Rev. B (2010), https://doi.org/10.1103/PhysRevB.81.094202

    Article  Google Scholar 

  • D. Le Coq, A. Bytchkov, V. Honkimäki, B. Beuneu, E. Bychkov: Neutron and x-ray diffraction studies of TeCl4 and TeBr4 liquids, J. Non-Cryst. Solids 354, 259–262 (2008), https://doi.org/10.1016/j.jnoncrysol.2007.07.099

    Article  CAS  Google Scholar 

  • D. Le Coq, B. Beuneu, E. Bychkov, M. Tokuyama, I. Oppenheim, H. Nishiyama: Structure of Te1-xClx liquids, AIP Conf. Proc. 982, 712–716 (2008)

    Article  Google Scholar 

  • M. Magallanes-Perdomo, P. Pena, P.N. De Aza, R.G. Carrodeguas, M.A. Rodríguez, X. Turrillas, S. De Aza, A.H. De Aza: Devitrification studies of wollastonite–tricalcium phosphate eutectic glass, Acta Biomater. 5, 3057–3066 (2009), https://doi.org/10.1016/j.actbio.2009.04.026

    Article  CAS  Google Scholar 

  • A.A. Piarristeguy, G.J. Cuello, P.G. Yot, M. Ribes, A. Pradel: Neutron thermodiffraction study of the crystallization of Ag–Ge–Se glasses: Evidence of a new phase, J. Phys. Condens. Matter 20, 155106 (2008)

    Article  CAS  Google Scholar 

  • E. Soignard, P.F. McMillan: An introduction to diamond anvil cells and loading techniques. In: High-Pressure Crystallography, ed. by A. Katrusiak, P. McMillan (Springer, Dordrecht 2004) pp. 81–100

    Chapter  Google Scholar 

  • S. Klotz: Techniques in High Pressure Neutron Scattering (CRC, Boca Raton 2013)

    Google Scholar 

  • N. Rey: Matériaux carbonés sp2/sp3 intercalés sous pression: le cas du graphite et des clathrates, Ph.D. Thesis (Univ. Claude Bernard, Lyon 2006)

    Google Scholar 

  • S. Klotz: Neutron diffraction studies on “simple” iron oxides under pressure: Fe3O4, \(\upalpha\)-Fe2O3, and FeO, Chin. Sci. Bull. 59, 5241–5250 (2014), https://doi.org/10.1007/s11434-014-0587-9

    Article  CAS  Google Scholar 

  • J.M. Besson, G. Hamel, T. Grima, R.J. Nelmes, J.S. Loveday, S. Hull, D. Häusermann: A large volume pressure cell for high temperatures, High Press. Res. 8, 625–630 (1992), https://doi.org/10.1080/08957959208206312

    Article  Google Scholar 

  • M. Mezouar, P. Faure, W. Crichton, N. Rambert, B. Sitaud, S. Bauchau, G. Blattmann: Multichannel collimator for structural investigation of liquids and amorphous materials at high pressures and temperatures, Rev. Sci. Instrum. 73, 3570 (2002), https://doi.org/10.1063/1.1505104

    Article  CAS  Google Scholar 

  • J. Binns, K.V. Kamenev, G.J. McIntyre, S.A. Moggach, S. Parsons: Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction, IUCrJ 3, 168–179 (2016)

    Article  CAS  Google Scholar 

  • P.F. McMillan, M. Wilson, M.C. Wilding, D. Daisenberger, M. Mezouar, G.N. Greaves: Polyamorphism and liquid–liquid phase transitions: Challenges for experiment and theory, J. Phys. Condens. Matter 19, 415101 (2007)

    Article  CAS  Google Scholar 

  • P.H. Poole, T. Grande, C.A. Angell, P.F. McMillan: Polymorphic phase transitions in liquids and glasses, Science 275, 322–323 (1997), https://doi.org/10.1126/science.275.5298.322

    Article  CAS  Google Scholar 

  • Z. Sun, G. Sun, Y. Chen, L. Xu: Liquid–liquid phase transition in water, Sci. China Phys. Mech. Astron. 57, 810–818 (2014), https://doi.org/10.1007/s11433-014-5451-z

    Article  CAS  Google Scholar 

  • A.K. Soper, M.A. Ricci: Structures of high-density and low-density water, Phys. Rev. Lett. 84, 2881–2884 (2000), https://doi.org/10.1103/PhysRevLett.84.2881

    Article  CAS  Google Scholar 

  • M. Guthrie, C.A. Tulk, C.J. Benmore, D.D. Klug: A structural study of very high-density amorphous ice, Chem. Phys. Lett. 397, 335–339 (2004), https://doi.org/10.1016/j.cplett.2004.07.116

    Article  CAS  Google Scholar 

  • J.L. Finney, D.T. Bowron, A.K. Soper, T. Loerting, E. Mayer, A. Hallbrucker: Structure of a new dense amorphous ice, Phys. Rev. Lett. (2002), https://doi.org/10.1103/PhysRevLett.89.205503

    Article  Google Scholar 

  • S. Klotz, G. Hamel, J.S. Loveday, R.J. Nelmes, M. Guthrie, A.K. Soper: Structure of high-density amorphous ice under pressure, Phys. Rev. Lett. (2002), https://doi.org/10.1103/PhysRevLett.89.285502

    Article  Google Scholar 

  • S. Klotz, T. Strässle, A.M. Saitta, G. Rousse, G. Hamel, R.J. Nelmes, J.S. Loveday, M. Guthrie: In situ neutron diffraction studies of high density amorphous ice under pressure, J. Phys. Condens. Matter 17, S967 (2005)

    Article  CAS  Google Scholar 

  • C.A. Tulk: Structural studies of several distinct metastable forms of amorphous ice, Science 297, 1320–1323 (2002), https://doi.org/10.1126/science.1074178

    Article  CAS  Google Scholar 

  • M. Guthrie, J. Urquidi, C.A. Tulk, C.J. Benmore, D.D. Klug, J. Neuefeind: Direct structural measurements of relaxation processes during transformations in amorphous ice, Phys. Rev. B (2003), https://doi.org/10.1103/PhysRevB.68.184110

    Article  Google Scholar 

  • V.V. Brazhkin, Y. Katayama, K. Trachenko, O.B. Tsiok, A.G. Lyapin, E. Artacho, M. Dove, G. Ferlat, Y. Inamura, H. Saitoh: Nature of the structural transformations in B2O3 glass under high pressure, Phys. Rev. Lett. 101, 35702 (2008)

    Article  CAS  Google Scholar 

  • A. Zeidler, K. Wezka, D.A.J. Whittaker, P.S. Salmon, A. Baroni, S. Klotz, H.E. Fischer, M.C. Wilding, C.L. Bull, M.G. Tucker, M. Salanne, G. Ferlat, M. Micoulaut: Density-driven structural transformations in B2O3 glass, Phys. Rev. B (2014), https://doi.org/10.1103/PhysRevB.90.024206

    Article  Google Scholar 

  • S. Sampath, C.J. Benmore, K.M. Lantzky, J. Neuefeind, K. Leinenweber, D.L. Price, J.L. Yarger: Intermediate-range order in permanently densified GeO2 glass, Phys. Rev. Lett. (2003), https://doi.org/10.1103/PhysRevLett.90.115502

    Article  Google Scholar 

  • S. Sugai, A. Onodera: Medium-range order in permanently densified SiO2 and GeO2 glass, Phys. Rev. Lett. 77, 4210–4213 (1996), https://doi.org/10.1103/PhysRevLett.77.4210

    Article  CAS  Google Scholar 

  • Y. Inamura, M. Arai, M. Nakamura, T. Otomo, N. Kitamura, S.M. Bennington, A.C. Hannon, U. Buchenau: Intermediate range structure and low-energy dynamics of densified vitreous silica, J. Non-Cryst. Solids 293–295, 389–393 (2001)

    Article  Google Scholar 

  • J.P.P. Itié, G. Calas, J. Petiau, A. Fontaine, H. Tolentino: Pressure-induced coordination changes in crystalline and vitreous GeO2, Phys. Rev. Lett. 63, 398–401 (1989)

    Article  Google Scholar 

  • C. Meade, R.J. Hemley, H.K. Mao: High-pressure x-ray diffraction of SiO2 glass, Phys. Rev. Lett. 69, 1387–1390 (1992)

    Article  CAS  Google Scholar 

  • T. Sato, N. Funamori: Sixfold-coordinated amorphous polymorph of SiO2 under high pressure, Phys. Rev. Lett. (2008), https://doi.org/10.1103/PhysRevLett.101.255502

    Article  Google Scholar 

  • V.V. Brazhkin: Comments on “Sixfold-coordinated amorphous polymorph of SiO2 under high pressure”, Phys. Rev. Lett. 102, 209603 (2009)

    Article  CAS  Google Scholar 

  • C.J. Benmore, E. Soignard, S.A. Amin, M.S.D. Guthrie: Shastri, P.L. Lee, J.L. Yarger: Structural and topological changes in silica glass at pressure, Phys. Rev. B 81, 054–105 (2010)

    Article  CAS  Google Scholar 

  • Y. Inamura, Y. Katayama, W. Utsumi, K. Funakoshi: Transformations in the intermediate-range structure of SiO2 glass under high pressure and temperature, Phys. Rev. Lett. 93, 15501 (2004)

    Article  CAS  Google Scholar 

  • T. Sato, N. Funamori: High-pressure structural transformation of SiO2 glass up to 100 GPa, Phys. Rev. B 82, 184102 (2010)

    Article  CAS  Google Scholar 

  • A. Zeidler, K. Wezka, R.F. Rowlands, D.A.J. Whittaker, P.S. Salmon, A. Polidori, J.W.E. Drewitt, S. Klotz, H.E. Fischer, M.C. Wilding, C.L. Bull, M.G. Tucker, M. Wilson: High-pressure transformation of SiO2 glass from a tetrahedral to an octahedral network: A joint approach using neutron diffraction and molecular dynamics, Phys. Rev. Lett. 113, 135501 (2014)

    Article  CAS  Google Scholar 

  • X. Hong, G. Shen, V.B. Prakapenka, M. Newville, M.L. Rivers, S.R. Sutton: Intermediate states of GeO2 glass under pressures up to 35 GPa, Phys. Rev. B 75, 104201 (2007)

    Article  CAS  Google Scholar 

  • Q. Mei, S. Sinogeikin, G. Shen, S. Amin, C.J. Benmore, K. Ding: High-pressure x-ray diffraction measurements on vitreous GeO2 under hydrostatic conditions, Phys. Rev. B 81, 174113 (2010)

    Article  CAS  Google Scholar 

  • X. Hong, L. Ehm, T.S. Duffy: Polyhedral units and network connectivity in GeO2 glass at high pressure: An x-ray total scattering investigation, Appl. Phys. Lett. 105, 81904 (2014), https://doi.org/10.1063/1.4894103

    Article  CAS  Google Scholar 

  • J.W.E. Drewitt, P.S. Salmon, A.C. Barnes, S. Klotz, H.E. Fischer, W.A. Crichton: Structure of GeO2 glass at pressures up to 8.6 GPa, Phys. Rev. B 81, 14202 (2010)

    Article  CAS  Google Scholar 

  • P.S. Salmon, J.W.E. Drewitt, D.A.J. Whittaker, A. Zeidler, K. Wezka, C.L. Bull, M.G. Tucker, M.C. Wilding, M. Guthrie, D. Marrocchelli: Density-driven structural transformations in network forming glasses: A high-pressure neutron diffraction study of GeO2 glass up to 17.5 GPa, J. Phys. Condens. Matter 24, 415102 (2012), https://doi.org/10.1088/0953-8984/24/41/415102

    Article  CAS  Google Scholar 

  • K. Wezka, P.S. Salmon, A. Zeidler, D.A.J. Whittaker, J.W.E. Drewitt, S. Klotz, H.E. Fischer, D. Marrocchelli: Mechanisms of network collapse in GeO2 glass: High-pressure neutron diffraction with isotope substitution as arbitrator of competing models, J. Phys. Condens. Matter 24, 502101 (2012)

    Article  CAS  Google Scholar 

  • M. Micoulaut, L. Cormier, G.S. Henderson: The structure of amorphous, crystalline and liquid GeO2, J. Phys. Condens. Matter 18, R1–R32 (2006)

    Article  CAS  Google Scholar 

  • P.S. Salmon, A. Zeidler: Networks under pressure: The development of in situ high-pressure neutron diffraction for glassy and liquid materials, J. Phys. Condens. Matter 27, 133201 (2015), https://doi.org/10.1088/0953-8984/27/13/133201

    Article  CAS  Google Scholar 

  • A. Zeidler, P.S. Salmon, L.B. Skinner: Packing and the structural transformations in liquid and amorphous oxides from ambient to extreme conditions, Proc. Natl. Acad. Sci. U.S.A. 111, 10045–10048 (2014), https://doi.org/10.1073/pnas.1405660111

    Article  CAS  Google Scholar 

  • Y. Wang, T. Sakamaki, L.B. Skinner, Z. Jing, T. Yu, Y. Kono, C. Park, G. Shen, M.L. Rivers, S.R. Sutton: Atomistic insight into viscosity and density of silicate melts under pressure, Nat. Commun. 5, 3241 (2014), https://doi.org/10.1038/ncomms4241

    Article  CAS  Google Scholar 

  • Q. Mei, C.J. Benmore, R.T. Hart, E. Bychkov, P.S. Salmon, C.D. Martin, F.M. Michel, S.M. Antao, P.J. Chupas, P. Lee, S.D. Shastri, S.D. Parise, K. Leinenweber, S. Amin, J.L. Yarger: Topological changes in glassy GeSe2 at pressures up to 9.3 GPa dtermined by high-energy x-ray and neutron diffraction measurements, Phys. Rev. B 74, 14203 (2006)

    Article  CAS  Google Scholar 

  • K. Wezka, A. Bouzid, K.J. Pizzey, P.S. Salmon, A. Zeidler, S. Klotz, H.E. Fischer, C.L. Bull, M.G. Tucker, M. Boero, S. Le Roux, C. Tugène, C. Massobrio: Density-driven defect-mediated network collapse of GeSe2 glass, Phys. Rev. B 90, 054206 (2014)

    Article  CAS  Google Scholar 

  • A. Zeidler, J.W.E. Drewitt, P.S. Salmon, A.C. Barnes, W.A. Crichton, S. Klotz, H.E. Fischer, C.J. Benmore, S. Ramos, A.C. Hannon: Establishing the structure of GeS2 at high pressures and temperatures: A combined approach using x-ray and neutron diffraction, J. Phys. Condens. Matter 21, 474217 (2009)

    Article  CAS  Google Scholar 

  • H.W. Sheng, E. Ma, H.Z. Liu, J. Wen: Pressure tunes atomic packing in metallic glass, Appl. Phys. Lett. 88, 171906–171903 (2006)

    Article  CAS  Google Scholar 

  • W.A. Crichton, M. Mezouar, T. Grande, S. Stølen, A. Grzechnik: Breakdown of intermediate-range order in liquid GeSe2 at high pressure, Nature 414, 622–625 (2001), https://doi.org/10.1038/414622a

    Article  CAS  Google Scholar 

  • Q.S. Zeng, Y.C. Li, C.M. Feng, P. Liermann, M. Somayazulu, G.Y. Shen, H.-K. Mao, R. Yang, J. Liu, T.D. Hu, J.Z. Jiang: Anomalous compression behavior in lanthanum/cerium-based metallic glass under high pressure, Proc. Natl. Acad. Sci. U.S.A. 104, 13565–13568 (2007), https://doi.org/10.1073/pnas.0705999104

    Article  CAS  Google Scholar 

  • H.W. Sheng, H.Z. Liu, Y.Q. Cheng, J. Wen, P.L. Lee, W.K. Luo, S.D. Shastri, E. Ma: Polyamorphism in a metallic glass, Nat. Mater. 6, 192–197 (2007), https://doi.org/10.1038/nmat1839

    Article  CAS  Google Scholar 

  • Q.S. Zeng, Y.Z. Fang, H.B. Lou, Y. Gong, X.D. Wang, K. Yang, A.G. Li, S. Yan, C. Lathe, F.M. Wu, X.H. Yu, J.Z. Jiang: Low-density to high-density transition in Ce75Al23Si2 metallic glass, J. Phys. Condens. Matter 22, 375404 (2010), https://doi.org/10.1088/0953-8984/22/37/375404

    Article  CAS  Google Scholar 

  • Q. Zeng, Y. Ding, W.L. Mao, W. Yang, S.V. Sinogeikin, J. Shu, H. Mao, J.Z. Jiang: Origin of pressure-induced polyamorphism in Ce75Al25 metallic glass, Phys. Rev. Lett. (2010), https://doi.org/10.1103/PhysRevLett.104.105702

    Article  Google Scholar 

  • A. Cadien, Q.Y. Hu, Y. Meng, Y.Q. Cheng, M.W. Chen, J.F. Shu, H.K. Mao, H.W. Sheng: First-order liquid–liquid phase transition in cerium, Phys. Rev. Lett. 110, 125503 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Cormier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Cormier, L. (2019). Neutron and X-Ray Diffraction of Glass. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_30

Download citation

Publish with us

Policies and ethics