Skip to main content

Viscosity of Glass and Glass-Forming Melts

  • Chapter
Springer Handbook of Glass

Part of the book series: Springer Handbooks ((SHB))

Abstract

Beginning with a selection of commercial glasses, the typical temperature course of the shear viscosity of inorganic glasses is discussed. The significance of the different temperature ranges for the different production steps (melting, hotforming, annealing) is explained. The viscosity-based typology of glasses as long or short is introduced and discussed with respect to glass composition.

The glass viscosity measurement methods conforming to ISO 7884 1-7 are described. This includes the individual rules for the determination of the shear viscosity fix points. Special shear viscosity measurement techniques applying to extremely high or low viscosity values are also described.

Concerning viscosity theory and modeling, Adams–Gibbs theory, Angell's fragility concept, and the semiempirical models after Vogel–Fulcher–Tammann (), Avramov–Milchev (), and Waterton–Mauro–Yue–Ellison–Gupta–Allan () are presented, applied to different glasses, and compared.

Viscoelastic behavior is discussed with respect both to shear and bulk deformation, including Boltzmann's superposition principle, the particular effect of delayed elasticity, the special viscoelastic models after Maxwell, Kelvin–Voigt, Burger etc. as well as special mathematics, i. e., the stretched exponential or Kohlrausch(–Williams–Watts) function. Viscoelastic characterization by dynamic mechanical analysis and by reversible compression in a quasi-isostatic device are discussed considering experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • D.L. Landau, E.M. Lifshitz: Fluid Mechanics, Course on Theoretical Physics, Vol. 6, 2nd edn. (Pergamon, Oxford 1987)

    Google Scholar 

  • F. Irgens: Rheology and Non-Newtonian Fluids (Springer, Cham 2014)

    Book  Google Scholar 

  • G.J. Janz: Molten salts data as reference standards for density, surface tension, viscosity, and electrical conductance: KNO3 and NaCl, J. Phys. Chem. Ref. Data 9, 791 (1980)

    Article  CAS  Google Scholar 

  • K.H. Sun: Fundamental condition of glass formation, J. Am. Ceram. Soc. 30, 277–281 (1947)

    Article  CAS  Google Scholar 

  • A. Dietzel: Die Kationenfeldstärken und ihre Beziehungen zu Entglasungsvorgängen, zur Verbindungsbildung und zu den Schmelzpunkten von Silikaten, Z. Elektrochem. 48, 9–23 (1942)

    CAS  Google Scholar 

  • ISO 7884-1: Glass – Viscosity and Viscosimetric Fix Points – Part 1: Principle for Determining Viscosity and Viscosimetric Fix Points (International Organization for Standardization ISO Central Secretariat, Geneva 1987)

    Google Scholar 

  • M. Kuhr: Analytische Methoden zur Untersuchung von Schmelzaggregaten. In: Chemische, Physikalische und Emissionsrelevante Analytik für die Glasindustrie, HVG-Fortbildungskurs, (Verlag der Deutschen Glastechnischen Gesellschaft, Offenbach 2015)

    Google Scholar 

  • U. Fotheringham, W. Kob, K. Binder, U. Buchenau, A. Wischnewski, R. Sprengard, S. Reinsch, R. Müller: Dynamics of the Glass Structure. In: Analysis of the Composition and Structure of Glass and Glass Ceramics, Schott Series on Glass and Glass Ceramics, ed. by H. Bach, D. Krause (Springer, Berlin 1999)

    Google Scholar 

  • SCHOTT AG: Technical Glasses Handbook, 18.11.15_final_schott_technical_glasses_row.pdf, available from http://www.schott.com/epackaging/german/download/index.html (2014)

  • C.A. Angell: Strong and fragile liquids. In: Relaxations in Complex Systems, ed. by K.L. Ngai, G.B. Write (National Technical Information Service, US Department of Commerce, Springeld 1985)

    Google Scholar 

  • ISO 7884-2 Glass – Viscosity and Viscosimetric Fix Points – Part 2: Determination of Viscosity by Means of Rotation Viscosimeters (International Organization for Standardization ISO Central Secretariat, Geneva 1987)

    Google Scholar 

  • ISO 7884-5: Glass – Viscosity and Viscosimetric Fix Points – Part 5: Determination of Viscosity by Sinking Bar Viscosimeter (International Organization for Standardization ISO Central Secretariat, Geneva 1987)

    Google Scholar 

  • ISO 7884-3: Glass – Viscosity and Viscosimetric Fix Points – Part 3: Determination of Viscosity by Fibre Elongation Viscosimeter (International Organization for Standardization ISO Central Secretariat, Geneva 1987)

    Google Scholar 

  • ISO 7884-6: Glass – Viscosity and Viscosimetric Fix Points – Part 6: Determination of Softening Point (International Organization for Standardization ISO Central Secretariat, Geneva 1987)

    Google Scholar 

  • ISO 7884-4: Glass – Viscosity and Viscosimetric Fix Points – Part 4: Determination of Viscosity by Beam Bending (International Organization for Standardization ISO Central Secretariat, Geneva 1987)

    Google Scholar 

  • G.W. Scherer: Relaxation in Glass and Composites (Krieger, Malabar 1992)

    Google Scholar 

  • ISO 7884-7: Glass – Viscosity and Viscosimetric Fix Points – Part 7: Determination of Annealing Point and Strain Point by Beam Bending (International Organization for Standardization ISO Central Secretariat, Geneva 1987)

    Google Scholar 

  • V.P. Klyuev, A.S. Totesh: Metody i Apparatura Dlya Kontrolya Vyazkosti Stekla (Methods and Instruments for Testing the Viscosity of Glasses) (VNIIESM, Moscow 1975), cited after: S.M. Rekhson: Viscosity and stress relaxation in commercial glasses in the glass transition region, J. Non-Cryst. Solids 38-39, 457–462 (1980)

    Google Scholar 

  • H. Kadali: Experimental Characterization of Stress Relaxation in Glass, Ph.D. Thesis (Clemson University, Clemson 2009)

    Google Scholar 

  • L.S. Negi: Strength of Materials (Tata McGraw-Hill, New Delhi 2008)

    Google Scholar 

  • G.J. Dienes, H.F. Klemm: Theory and application of the parallel plate plastometer, J. Appl. Phys. 17(6), 458–471 (1946)

    Article  CAS  Google Scholar 

  • A.N. Gent: Theory of the parallel plate viscometer, Br. J. Appl. Phys. 11, 85–87 (1960)

    Article  CAS  Google Scholar 

  • D. Joshi, P.F. Joseph: Parallel plate viscometry for glass at high viscosity, J. Am. Ceram. Soc. 97, 354–357 (2014)

    Article  CAS  Google Scholar 

  • L. Shartsis, S. Spinner: Viscosity and density of molten optical glasses, J. Res. Natl. Bur. Stand. 46(3), 176–194 (1951)

    Article  CAS  Google Scholar 

  • J. de Bast, P. Gilard: Rheologie du verre sous constraint dans l'intervalle de transformation, No. 32 (L'Institute pour l'Encouragement de la Recherche Scientifique dans l'Industrie et l'Agriculture (IRSIA), Colfontaine 1965) 23

    Google Scholar 

  • W. Beitz, K.-H. Küttner (Eds.): Dubbel, Taschenbuch für den Maschinenbau, 18th edn. (Springer, Berlin 1998) pp. C8–C26

    Google Scholar 

  • H. Serizawa, C.A. Lewinsohn, H. Murakawa: FEM evaluation of asymmetrical four-point bending test of SiC/SiC composite joints, Transactions JWRI 30(1), 119–125 (2001)

    Google Scholar 

  • U. Fotheringham: Dynamic mechanical analysis with an asymmetric 4-point bending mode. In: The American Ceramic Society Spring 2006 Glass & Optical Materials Division Meeting, Greenville (2006)

    Google Scholar 

  • S.P. Jaccani, L. Huang: A simple and convenient set-up for high-temperature Brillouin light scattering, J. Phys. D: Appl. Phys. 45, 275302 (2012)

    Article  CAS  Google Scholar 

  • M. Guerette, L. Huang: Understanding sodium borate glasses and melts from their elastic response to temperature, Int. J. of Appl. Glass Sci. 7(4), 452–463 (2016)

    Article  CAS  Google Scholar 

  • R.E. Wetton, R.D.L. Marsh, J.G. Van-de-Velde: Theory and application of dynamic mechanical thermal analysis, Thermochim. Acta 175, 1–11 (1991)

    Article  CAS  Google Scholar 

  • U. Fotheringham, R. Wurth, C. Rüssel: Thermal analyses to assess diffusion kinetics in the nano-sized interspaces between the growing crystals of a glass ceramics, Thermochim. Acta 522, 144–150 (2011)

    Article  CAS  Google Scholar 

  • G.C. Berry, D.J. Plazek: On the use of stretched-exponential functions for both linear viscoelastic creep and stress relaxation, Rheol. Acta 36, 320–329 (1997)

    Article  CAS  Google Scholar 

  • R.-G. Duan, G. Roebben, O. Van der Biest: Glass microstructure evaluations using high temperature mechanical spectroscopy measurements, J. Non-Cryst. Solids 316, 138–145 (2003)

    Article  CAS  Google Scholar 

  • A. Granato: The shear modulus of liquids, J. Phys. IV Colloq. 06(C8), C8-1–C8-9 (1996)

    Google Scholar 

  • P. Tordjeman, J.M. Felio, L. Gazagnes: Thermal effects on viscoelastic properties of silicate glass melts, J. Chem. Phys. 119(24), 13129–13134 (2003)

    Article  CAS  Google Scholar 

  • Y. Yue, R. Brückner: A new description and interpretation of the flow behaviour of glass forming melts, J. Non-Cryst. Solids 180, 66–79 (1994)

    Article  CAS  Google Scholar 

  • G. Adam, J. Gibbs: On the temperature dependence of cooperative relaxation properties in glass-forming liquids, J. Chem. Phys. 43, 139–146 (1965)

    Article  CAS  Google Scholar 

  • C.A. Angell: Relaxation in liquids, polymers and plastic crystals – Strong/fragile patterns and problems, J. Non-Cryst. Solids 131–133, 13–31 (1991)

    Article  Google Scholar 

  • U. Fotheringham, A. Baltes, R. Müller, R. Conradt: The residual configurational entropy below the glass transition: Determination for two commercial optical glasses, J. Non-Cryst. Solids 355, 642–652 (2009)

    Article  CAS  Google Scholar 

  • U. Fotheringham, R. Müller, K. Erb, A. Baltes, F. Siebers, E. Weiß, R. Dudek: Evaluation of the calorimetric glass transition of glasses and glass ceramics with respect to structural relaxation and dimensional stability, Thermochim. Acta 461, 72–81 (2007)

    Article  CAS  Google Scholar 

  • C.A. Angell, W. Sichina: Thermodynamics of the glass transition: Empirical aspects, Ann. N.Y. Acad. Sci. 279, 53–67 (1976)

    Article  CAS  Google Scholar 

  • C.A. Angell: Spectroscopy simulation and scattering, and the medium range order problem in glass, J. Non-Cryst. Solids 73, 1–17 (1985)

    Article  CAS  Google Scholar 

  • C.A. Angell: Formation of glasses from liquids and biopolymers, Science 267, 1924–1935 (1995)

    Article  CAS  Google Scholar 

  • C.A. Angell: Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit, J. Non-Cryst. Solids 102, 205–221 (1988)

    Article  CAS  Google Scholar 

  • A.L. Greer, K.F. Kelton, S. Sastry (Eds.): Proc. Symp. Frag. Glass-Form. Liq. TRIPS Series, Vol. 13 (Hindustan Book Agency, Gurgaon 2014)

    Google Scholar 

  • S.N. Glasstone, K. Laidler, H. Eyring: The Theory of Rate Processes (McGraw-Hill, New York 1941)

    Google Scholar 

  • O.V. Mazurin, Y.K. Startsev, S.V. Stoljar: Temperature dependences of viscosity of glass-forming substances at constant fictive temperatures, J. Non-Cryst. Solids 52, 105–114 (1982)

    Article  CAS  Google Scholar 

  • Q. Zheng, J.C. Mauro, A.J. Ellison, M. Potuzak, Y. Yue: Universality of the high-temperature viscosity limit of silicate liquids, Phys. Rev. B 83, 212202 (2011)

    Article  CAS  Google Scholar 

  • ISO 7884-1: Glass – Viscosity and Viscosimetric Fix Points – Part 1: Principles for Determining Viscosity and Viscometric Fixed Points (International Organization for Standardization ISO Central Secretariat, Geneva 1987)

    Google Scholar 

  • H. Vogel: Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten, Phys Z. 22, 645–646 (1921)

    CAS  Google Scholar 

  • G.S. Fulcher: Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc. 8, 339–355 (1925)

    Article  CAS  Google Scholar 

  • G. Tammann, W. Hesse: Die Abhängigkeit der Viskosität von der Temperatur bei unterkühlten Flüssigkeiten, Z. Anorg. Allg. Chem. 156, 245–257 (1926)

    Article  CAS  Google Scholar 

  • I.M. Hodge: Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 6. Adam-Gibbs formulation of nonlinearity, Macromolecules 20, 2897–2908 (1987)

    Article  CAS  Google Scholar 

  • U. Fotheringham, F.-T. Lentes, D.B. Dingwell: The Predictive power of three parameter viscosity models. In: Proc. 2011 Glass Opt. Mater. Div. Annu. Meet (American Ceramic Society, Savannah 2011)

    Google Scholar 

  • J.C. Mauro, Y. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan: Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. 106(47), 19780–19784 (2009)

    Article  CAS  Google Scholar 

  • I. Avramov, A. Milchev: Effect of disorder on diffusion and viscosity in condensed systems, J. Non-Cryst. Solids 104, 253–260 (1988)

    Article  CAS  Google Scholar 

  • I. Avramov: Viscosity of glassforming melts, J. Non-Cryst. Solids 238, 6–10 (1998)

    Article  CAS  Google Scholar 

  • H. Bässler: Viscous flow in supercooled liquids analyzed in terms of transport theory for random media with energetic disorder, Phys. Rev. Lett. 58, 767 (1987)

    Article  Google Scholar 

  • S.C. Waterton: The viscosity-temperature relationship and some inferences on the nature of molten and of plastic glass, J. Soc. Technol. 16, 244–249 (1932)

    CAS  Google Scholar 

  • A.L. Zijlstra: The viscosity of some silicate glasses in connection with the thermal history, Phys. Chem. Glasses 4, 143–151 (1963)

    CAS  Google Scholar 

  • G. Meerlender: Die erweiterte Jenckel-Gleichung, eine leistungsfähige Viskositäts-Temperatur-Formel, I. Eigenschaften und Anwendbarkeit auf die numerische Interpolation, Rheol. Acta 6(4), 143–151 (1967)

    Article  Google Scholar 

  • P.K. Gupta, J.C. Mauro: Composition dependence of glass transition temperature and fragility. I. A topological model incorporating temperature-dependent constraints, J. Chem. Phys. 130, 094503 (2009)

    Article  CAS  Google Scholar 

  • I.S. Gutzow, J. Schmelzer: The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization (Springer, Berlin 2013)

    Book  Google Scholar 

  • C. Alba-Simionesco: Isothermal glass transitions in supercooled and overcompressed liquids, J. Chem. Phys. 100, 2250–2257 (1994)

    Article  CAS  Google Scholar 

  • SCHOTT AG: Material Safety Data Sheets (SCHOTT AG, Mainz 2005)

    Google Scholar 

  • C. Bienert: Measurement of the Dimensional Relaxation Effect in Optical Glasses, Diploma Thesis (University of Erlangen-Nürnberg, Erlangen 2007)

    Google Scholar 

  • U. Fotheringham, O. Sohr, P. Fischer, G. Westenberger, D. Frost, C. Bienert, R. Weißmann, K. Richardson: Optische und volumetrische Messungen an Gigapascal-verdichteten optischen Gläsern, dgg journal 9(2), 32–33 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Fotheringham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Fotheringham, U. (2019). Viscosity of Glass and Glass-Forming Melts. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_3

Download citation

Publish with us

Policies and ethics