Skip to main content

The Origin of the Ionized Linker: Geochemical Predestination for Phosphate?

  • Chapter
  • First Online:

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 35))

Abstract

A major event in the origin of life on the earth must have been the formation of self-replicating polymers [e.g., Gilbert (Nature 319(6055):618, 1986)]. It is likely that any robust self-replicating polymer would have needed an ionized linker to slow hydrolysis and prevent diffusion. In modern life, the ionized linker is phosphate. In this chapter, I consider other alternatives to phosphate as linkers prior to the evolution of modern RNA/DNA. From a chemical and geological perspective phosphate is suggested to be the most likely molecule capable of performing the key activities of an ionized linker within a nucleic acid.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achbergerová L, Nahálka J (2011) Polyphosphate-an ancient energy source and active metabolic regulator. Microb Cell Factories 10(1):63

    Article  CAS  Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53(1):197–214

    Article  CAS  Google Scholar 

  • Bean HD, Anet FA, Gould IR, Hud NV (2006) Glyoxylate as a backbone linkage for a prebiotic ancestor of RNA. Orig Life Evol Biosph 36(1):39–63

    Article  CAS  PubMed  Google Scholar 

  • Benner SA (2011) Comment on “A bacterium that can grow by using arsenic instead of phosphorus”. Science 332:1149

    Article  CAS  PubMed  Google Scholar 

  • Benner SA, Sismour AM (2005) Synthetic biology. Nat Rev Genet 6(7):533–543

    Article  CAS  PubMed  Google Scholar 

  • Benner SA, Kim HJ, Carrigan MA (2012) Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc Chem Res 45(12):2025–2034

    Article  CAS  PubMed  Google Scholar 

  • Blackmond DG (2010) The origin of biological homochirality. Cold Spring Harb Perspect Biol 2(5):a002147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borden J, Crans DC, Florián J (2006) Transition state analogues for nucleotidyl transfer reactions: structure and stability of pentavalent vanadate and phosphate ester dianions. J Phys Chem B 110(30):14988–14999

    Article  CAS  PubMed  Google Scholar 

  • Bornscheuer UT, Kazlauskas RJ (2004) Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways. Angew Chem Int Ed 43(45):6032–6040

    Article  CAS  Google Scholar 

  • Bryant DE, Marriott KE, Macgregor SA, Kilner C, Pasek MA, Kee TP (2010) On the prebiotic potential of reduced oxidation state phosphorus: the H-phosphinate–pyruvate system. Chem Commun 46(21):3726–3728

    Article  CAS  Google Scholar 

  • Burcar B, Pasek M, Gull M, Cafferty BJ, Velasco F, Hud NV, Menor-Salván C (2016) Darwin’s warm little pond: a one-pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a urea-based solvent. Angew Chem Int Ed 55(42):13249–13253

    Article  CAS  Google Scholar 

  • Cafferty BJ, Fialho DM, Khanam J, Krishnamurthy R, Hud NV (2016a) Spontaneous formation and base pairing of plausible prebiotic nucleotides in water. Nat Commun 7

    Google Scholar 

  • Cafferty BJ, Musetti C, Kim K, Horowitz ED, Krishnamurthy R, Hud NV (2016b) Small molecule-mediated duplex formation of nucleic acids with ‘incompatible’backbones. Chem Commun 52(31):5436–5439

    Article  CAS  Google Scholar 

  • Callahan MP, Smith KE, Cleaves HJ, Ruzicka J, Stern JC, Glavin DP et al (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci 108(34):13995–13998

    Article  PubMed  Google Scholar 

  • Cech TR, Bass BL (1986) Biological catalysis by RNA. Annu Rev Biochem 55(1):599–629

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Wang L, Deng Z (2010) Twenty years hunting for sulfur in DNA. Protein Cell 1(1):14–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Graaf RM, Schwartz AW (2005) Thermal synthesis of nucleoside H-phosphonates under mild conditions. Orig Life Evol Biosph 35(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • De Graaf RM, Visscher J, Schwartz AW (1998) Prebiotic chemistry of phosphonic acids: products derived from phosphonoacetaldehyde in the presence of formaldehyde. Orig Life Evol Biosph 28(3):271–282

    Google Scholar 

  • Elias M, Wellner A, Goldin-Azulay K, Chabriere E, Vorholt JA, Erb TJ, Tawfik DS (2012) The molecular basis of phosphate discrimination in arsenate-rich environments. Nature 491(7422):134–137

    Article  CAS  PubMed  Google Scholar 

  • Erb TJ, Kiefer P, Hattendorf B, Günther D, Vorholt JA (2012) GFAJ-1 is an arsenate-resistant, phosphate-dependent organism. Science 337(6093):467–470

    Article  CAS  PubMed  Google Scholar 

  • Fekry MI, Tipton PA, Gates KS (2011) Kinetic consequences of replacing the internucleotide phosphorus atoms in DNA with arsenic. ACS Chem Biol 6(2):127–130

    Article  CAS  PubMed  Google Scholar 

  • Fox SW (1969) Self-ordered polymers and propagative cell-like systems. Naturwissenschaften 56(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Gilbert W (1986) Origin of life: The RNA world. Nature 319(6055)

    Google Scholar 

  • Goldhaber MB, Orr WL (1995) Kinetic controls on thermochemical sulfate reduction as a source of sedimentary H2S. ACS Symp Ser 612:412–425

    Article  CAS  Google Scholar 

  • Gulick A (1955) Phosphorus as a factor in the origin of life. Am Sci 43(3):479–489

    CAS  Google Scholar 

  • Gull M, Mojica MA, Fernández FM, Gaul DA, Orlando TM, Liotta CL, Pasek MA (2015) Nucleoside phosphorylation by the mineral schreibersite. Sci Rep 5:17198–17198. https://doi.org/10.1038/srep17198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guthrie JP (1978) Hydrolysis of esters of oxy acids: pKa values for strong acids; Brønsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20 pK units. Can J Chem 56(17):2342–2354

    Article  CAS  Google Scholar 

  • Hud NV, Cafferty BJ, Krishnamurthy R, Williams LD (2013) The origin of RNA and “my grandfather’s axe”. Chem Biol 20(4):466–474

    Article  CAS  PubMed  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Kamerlin SC, Sharma PK, Prasad RB, Warshel A (2013) Why nature really chose phosphate. Q Rev Biophys 46(1):1

    Article  CAS  PubMed  Google Scholar 

  • Klemperer WG, Marquart TA, Yaghi OM (1992) New directions in polyvanadate chemistry: from cages and clusters to baskets, belts, bowls, and barrels. Angew Chem Int Ed Engl 31(1):49–51

    Article  Google Scholar 

  • Lopez V, Stevens T, Lindquist RN (1976) Vanadium ion inhibition of alkaline phosphatase-catalyzed phosphate ester hydrolysis. Arch Biochem Biophys 175(1):31–38

    Article  CAS  PubMed  Google Scholar 

  • Martin AR, Barvik I, Luvino D, Smietana M, Vasseur JJ (2011) Dynamic and programmable DNA-templated boronic ester formation. Angew Chem Int Ed 50(18):4193–4196

    Article  CAS  Google Scholar 

  • Martin AR, Mohanan K, Luvino D, Floquet N, Baraguey C, Smietana M, Vasseur JJ (2009) Expanding the borononucleotide family: synthesis of borono-analogues of dCMP, dGMP and dAMP. Org Biomol Chem 7(21):4369–4377

    Article  CAS  PubMed  Google Scholar 

  • Martin AR, Vasseur JJ, Smietana M (2013) Boron and nucleic acid chemistries: merging the best of both worlds. Chem Soc Rev 42(13):5684–5713

    Article  CAS  PubMed  Google Scholar 

  • Menor-Salván C, Ruiz-Bermejo D, Guzmán MI, Osuna-Esteban S, Veintemillas-Verdaguer S (2009) Synthesis of pyrimidines and triazines in ice: implications for the prebiotic chemistry of nucleobases. Chem Eur J 15(17):4411–4418

    Article  CAS  PubMed  Google Scholar 

  • Merck Index (1996) 12th ed. Merck, Whitehouse Station, NJ, p 152

    Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117(3046):528–529

    Article  CAS  Google Scholar 

  • Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130(3370):245–251

    Article  CAS  PubMed  Google Scholar 

  • Mitchell MC, Taylor RJ, Kee TP (1998) On the hydrolysis of dimethyl-H-phosphonate. An 18O-labelling and 31P-NMR study. Polyhedron 17(4):433–442

    Article  CAS  Google Scholar 

  • Mohammed FS, Chen K, Mojica M, Conley M, Napoline JW, Butch C, Pollet P, Krishnamurthy R, Liotta CL (2017) A plausible prebiotic origin of glyoxylate: nonenzymatic transamination reactions of glycine with formaldehyde. Synlett 28(01):93–97

    CAS  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26(3):311–325

    Article  CAS  PubMed  Google Scholar 

  • Nelson KE, Levy M, Miller SL (2000) Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc Natl Acad Sci 97(8):3868–3871

    Article  CAS  PubMed  Google Scholar 

  • Niemi R, Vepsäläinen J, Taipale H, Järvinen T (1999) Bisphosphonate prodrugs: synthesis and in vitro evaluation of novel acyloxyalkyl esters of clodronic acid. J Med Chem 42(24):5053–5058

    Article  CAS  PubMed  Google Scholar 

  • O'Neill MA, Warrenfeltz D, Kates K, Pellerin P, Doco T, Darvill AG, Albersheim P (1996) Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester in vitro conditions for the formation and hydrolysis of the dimer. J Biol Chem 271(37):22923–22930

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39(2):99–123

    Article  CAS  Google Scholar 

  • Ossenkamp GC, Kemmitt T, Johnston JH (2001) New approaches to surface-alkoxylated silica with increased hydrolytic stability. Chem Mater 13(11):3975–3980

    Article  CAS  Google Scholar 

  • Pabis A, Duarte F, Kamerlin SC (2016) Promiscuity in the enzymatic catalysis of phosphate and sulfate transfer. Biochemistry 55(22):3061–3081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasek MA (2017) Schreibersite on the early earth: scenarios for prebiotic phosphorylation. Geosci Front 8:329–335

    Article  CAS  Google Scholar 

  • Pasek M, Block K (2009) Lightning-induced reduction of phosphorus oxidation state. Nat Geosci 2(8):553–556

    Article  CAS  Google Scholar 

  • Pasek MA, Dworkin JP, Lauretta DS (2007) A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim Cosmochim Acta 71(7):1721–1736

    Article  CAS  Google Scholar 

  • Pasek MA, Harnmeijer JP, Buick R, Gull M, Atlas Z (2013) Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc Natl Acad Sci 110(25):10089–10094

    Article  PubMed  Google Scholar 

  • Pasek M, Herschy B, Kee TP (2015) Phosphorus: a case for mineral-organic reactions in prebiotic chemistry. Orig Life Evol Biosph 45(1–2):207–218

    Article  CAS  PubMed  Google Scholar 

  • Pasek MA, Kee TP, Bryant DE, Pavlov AA, Lunine JI (2008) Production of potentially prebiotic condensed phosphates by phosphorus redox chemistry. Angew Chem Int Ed 47(41):7918–7920

    Article  CAS  Google Scholar 

  • Pasek MA, Lauretta DS (2005) Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth. Astrobiology 5(4):515–535

    Article  CAS  PubMed  Google Scholar 

  • Pawlowska R, Korczynski D, Nawrot B, Stec WJ, Chworos A (2016) The α-thio and/or β-γ-hypophosphate analogs of ATP as cofactors of T4 DNA ligase. Bioorg Chem 67:110–115

    Article  CAS  PubMed  Google Scholar 

  • Peyser JR, Ferris JP (2001) The rates of hydrolysis of thymidyl-3′, 5′-thymidine-H-phosphonate: the possible role of nucleic acids linked by diesters of phosphorous acid in the origins of life. Orig Life Evol Biosph 31(4):363–380

    Article  CAS  PubMed  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459(7244):239–242

    Article  CAS  PubMed  Google Scholar 

  • Prusiner SB (1991) Molecular biology of prion diseases. Science 252(5012):1515–1523

    Article  CAS  PubMed  Google Scholar 

  • Reaves ML, Sinha S, Rabinowitz JD, Kruglyak L, Redfield RJ (2012) Absence of detectable arsenate in DNA from arsenate-grown GFAJ-1 cells. Science 337(6093):470–473

    Article  CAS  PubMed  Google Scholar 

  • Ricardo A, Carrigan MA, Olcott AN, Benner SA (2004) Borate minerals stabilize ribose. Science 303(5655):196–196

    Article  CAS  PubMed  Google Scholar 

  • Rochette EA, Bostick BC, Li G, Fendorf S (2000) Kinetics of arsenate reduction by dissolved sulfide. Environ Sci Technol 34(22):4714–4720

    Article  CAS  Google Scholar 

  • Schoepp-Cothenet B, Nitschke W, Barge LM, Ponce A, Russell MJ, Tsapin AI (2011) Comment on “A bacterium that can grow by using arsenic instead of phosphorus”. Science 332:1149

    Article  CAS  PubMed  Google Scholar 

  • Steinberg H, Hunter DL (1957) Preparation and rate of hydrolysis of boric acid esters. Ind Eng Chem 49(2):174–181

    Article  CAS  Google Scholar 

  • Sugiyama M, Hong Z, Whalen LJ, Greenberg WA, Wong CH (2006) Borate as a phosphate ester mimic in aldolase-catalyzed reactions: practical synthesis of L-fructose and L-Iminocyclitols. Adv Synth Catal 348(18):2555–2559

    Article  CAS  Google Scholar 

  • Takeno, N. (2005). Atlas of Eh-pH diagrams. Geological survey of Japan open file report, 419, p 102

    Google Scholar 

  • Tracey AS, Gresser MJ (1988) The characterization of primary, secondary, and tertiary vanadate alkyl esters by 51V nuclear magnetic resonance spectroscopy. Can J Chem 66(10):2570–2574

    Article  CAS  Google Scholar 

  • Tracey AS, Galeffi B, Mahjour S (1988) Vanadium (V) oxyanions. The dependence of vanadate alkyl ester formation on the pKa of the parent alcohols. Can J Chem 66(9):2294–2298

    Article  CAS  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33(2):241–265

    Article  Google Scholar 

  • Van Mooy BA, Rocap G, Fredricks HF, Evans CT, Devol AH (2006) Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc Natl Acad Sci 103(23):8607–8612

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Li ZJ, Ying HJ (2009) Solubility of adenosine 5′-monophosphate in different solvents from (288.15 to 330.15) K. J Chem Eng Data 55(2):992–993

    Article  CAS  Google Scholar 

  • Wang L, Chen S, Xu T, Taghizadeh K, Wishnok JS, Zhou X et al (2007) Phosphorothioation of DNA in bacteria by dnd genes. Nat Chem Biol 3(11):709–710

    Article  CAS  PubMed  Google Scholar 

  • Wanty RB, Goldhaber MB (1992) Thermodynamics and kinetics of reactions involving vanadium in natural systems: accumulation of vanadium in sedimentary rocks. Geochim Cosmochim Acta 56(4):1471–1483

    Article  CAS  Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Westheimer FH (1987) Why nature chose phosphates. Science 235(4793):1173–1178

    Article  CAS  PubMed  Google Scholar 

  • White HB (1976) Coenzymes as fossils of an earlier metabolic state. J Mol Evol 7(2):101–104

    Article  CAS  PubMed  Google Scholar 

  • Williams NH, Wyman P (2001) Base catalysed phosphate diester hydrolysis. Chem Commun (14):1268–1269

    Google Scholar 

  • Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J et al (2011) A bacterium that can grow by using arsenic instead of phosphorus. Science 332(6034):1163–1166

    Article  CAS  PubMed  Google Scholar 

  • Wohlgemuth R, Liese A, Streit W (2017) Biocatalytic phosphorylations of metabolites: past, present, and future. Trends Biotechnol 35(5):452–465

    Google Scholar 

  • Wuggenig F, Hammerschmidt F (1998) Enzymes in organic chemistry VI [1]. Enantioselective hydrolysis of 1-chloroacetoxycycloalkylmethylphosphonates with lipase AP 6 from Aspergillus niger and chemoenzymatic synthesis of chiral, nonracemic 1-aminocyclohexyl-methylphosphonic acids. Monatsh Chem Chem Mon 129(4):423–436

    CAS  Google Scholar 

  • Xie X, Liang J, Pu T, Xu F, Yao F, Yang Y et al (2012) Phosphorothioate DNA as an antioxidant in bacteria. Nucleic Acids Res 40(18):9115–9124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagata Y (1999) Prebiotic formation of ADP and ATP from AMP, calcium phosphates and cyanate in aqueous solution. Orig Life Evol Biosph 29(5):511–520

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Pasek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pasek, M.A. (2018). The Origin of the Ionized Linker: Geochemical Predestination for Phosphate?. In: Menor-Salván , C. (eds) Prebiotic Chemistry and Chemical Evolution of Nucleic Acids. Nucleic Acids and Molecular Biology, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-319-93584-3_6

Download citation

Publish with us

Policies and ethics