Skip to main content

Haptic Guidance with a Soft Exoskeleton Reduces Error in Drone Teleoperation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10894))

Abstract

Haptic guidance has been shown to improve performance in many fields as it can give additional information without overloading other sensory channels such as vision or audition. Our group is investigating new intuitive ways to interact with robots, and we developed a suit to control drones with upper body movement, called the FlyJacket. In this paper, we present the integration of a cable-driven haptic guidance in the FlyJacket. The aim of the device is to apply a force relative to the distance between the drone and a predetermined trajectory to correct user torso orientation and improve the flight precision. Participants (n = 10) flying a simulated fixed-wing drone controlled with torso movements tested four different guidance profiles (three linear profiles with different stiffness and one quadratic). Our results show that a quadratically shaped guidance, which gives a weak force when the error is small and a strong force when the error becomes significant, was the most effective guidance to improve the performance. All participants also reported through questionnaires that the haptic guidance was useful for flight control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Floreano, D., Wood, R.J.: Science, technology and the future of small autonomous drones. Nature 521(7553), 460–466 (2015)

    Article  Google Scholar 

  2. Murphy, R.R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P., Choset, H., Erkmen, A.M.: Search and rescue robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1151–1173. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5_51

    Chapter  Google Scholar 

  3. Sanna, A., Lamberti, F., Paravati, G., Manuri, F.: A Kinect-based natural interface for quadrotor control. Entertain. Comput. 4(3), 179–186 (2013)

    Article  Google Scholar 

  4. Pfeil, K., Koh, S.L., LaViola, J.: Exploring 3D gesture metaphors for interaction with unmanned aerial vehicles. In: Proceedings of the 2013 International Conference on Intelligent User Interfaces, pp. 257–266. ACM, Santa Monica (2013)

    Google Scholar 

  5. Miehlbradt, J., Cherpillod, A., Mintchev, S., Coscia, M., Artoni, F., Floreano, D., Micera, S.: A data-driven body-to-machine interface for the effortless control of drones, submitted for publication

    Google Scholar 

  6. Rognon, C., Mintchev, S., Dell’Agnola, F., Cherpillod, A., Atienza, D., Floreano, D.: FlyJacket: an upper-body soft exoskeleton for immersive drone control. IEEE Robot. Autom. Lett. 3(3), 2362–2369 (2018)

    Article  Google Scholar 

  7. Coad, M.M., Okamura, A.M., Wren, S., Mintz, Y., Lendvay, T.S., Jarc, A.M., Nisky, I.: Training in divergent and convergent force fields during 6-DOF teleoperation with a robot-assisted surgical system. In: IEEE World Haptics Conference, pp. 195–200. IEEE, Munich (2017)

    Google Scholar 

  8. Nef, T., Mihelj, M., Riener, R.: ARMin: a robot for patient-cooperative arm therapy. Med. Biol. Eng. Comput. 45(9), 887–900 (2007)

    Article  Google Scholar 

  9. Rauter, G., von Zitzewitz, J., Duschau-Wicke, A., Vallery, H., Riener, R.: A tendon-based parallel robot applied to motor learning in sports. In: Proceedings of 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 82–87. IEEE, Tokyo (2010)

    Google Scholar 

  10. Sigrist, R., Rauter, G., Riener, R., Wolf, P.: Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon. Bull. Rev. 20(1), 21–53 (2013)

    Article  Google Scholar 

  11. Lam, T.M., Mulder, M., van Paassen, M.R.: Haptic interface in UAV tele-operation using force-stiffness feedback. In: International Conference on Systems, Man and Cybernetics, pp. 835–840. IEEE, San Antonio (2009)

    Google Scholar 

  12. Son, H.I., Kim, J., Chuang, L., Franchi, A., Giordano, P.R., Lee, D., Bülthoff, H.H.: An evaluation of haptic cues on the tele-operator’s perceptual awareness of multiple UAVs’ environments. In: World Haptics Conference, pp. 149–154. IEEE, Istanbul (2011)

    Google Scholar 

  13. Omari, S., Hua, M.D., Ducard, G., Hamel, T.: Bilateral haptic teleoperation of VTOL UAVs. In: IEEE International Conference on Robotics and Automation, pp. 2393–2399. IEEE, Karlsruhe (2013)

    Google Scholar 

  14. Hou, X., Mahony, R., Schill, F.: Comparative study of haptic interfaces for bilateral teleoperation of VTOL aerial robots. IEEE Trans. Syst. Man Cybern. Syst. 46(10), 1352–1363 (2016)

    Article  Google Scholar 

  15. Kanso, A., Elhajj, I.H., Shammas, E., Asmar, D.: Enhanced teleoperation of UAVs with haptic feedback. In: IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 305–310. IEEE, Busan (2015)

    Google Scholar 

  16. van Asseldonk, E.H., Wessels, M., Stienen, A.H., van der Helm, F.C., van der Kooij, H.: Influence of haptic guidance in learning a novel visuomotor task. J. Physiol. Paris 103(3), 276–285 (2009)

    Article  Google Scholar 

  17. Mulder, M., Abbink, D.A., Boer, E.R.: The effect of haptic guidance on curve negotiation behavior of young, experienced drivers. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 804–809. IEEE, Singapore (2008)

    Google Scholar 

  18. Forsyth, B.A., MacLean, K.E.: Predictive haptic guidance: intelligent user assistance for the control of dynamic tasks. IEEE Trans. Vis. Comput. Graph. 12(1), 103–113 (2006)

    Article  Google Scholar 

  19. Schmidt, R.A., Wrisberg, C.A.: Motor Learning and Performance (2004)

    Google Scholar 

  20. McGill, S., Seguin, J., Bennett, G.: Passive stiffness of the lumber torso in flexion, extension, lateral bending, and axial rotation: effect of belt wearing and breath holding. Spine 19(6), 696–704 (1994)

    Article  Google Scholar 

  21. Mcneill, T., Warwick, D., Andersson, G., Schultz, A.: Trunk strengths in attempted flexion, extension, and lateral bending in healthy subjects and patients with low-back disorders. Spine 5(6), 529–538 (1980)

    Article  Google Scholar 

  22. Graves, J.E., Pollock, M.L., Carpenter, D.M., Leggett, S.H., Jones, A., MacMillan, M., Fulton, M.: Quantitative assessment of full range-of-motion isometric lumbar extension strength. Spine 15(4), 289–294 (1990)

    Article  Google Scholar 

  23. Rebelo, J., Sednaoui, T., den Exter, E.B., Krueger, T., Schiele, A.: Bilateral robot teleoperation: a wearable arm exoskeleton featuring an intuitive user interface. IEEE Robot. Autom. Magaz. 21(4), 62–69 (2014)

    Article  Google Scholar 

  24. Cherpillod, A., Mintchev, S., Floreano, D.: Embodied flight with a drone. arXiv preprint arXiv:1707.01788 (2017)

  25. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Adv. Psychol. 52, 139–183 (1988)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Alexandre Cherpillod for the implementation of the error calculation in the drone simulator and thanks Claire Donnat for her help with the statistical analysis. This work has been supported by the Swiss National Center of Competence in Research in Robotics (NCCR Robotics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carine Rognon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rognon, C., Wu, A.R., Mintchev, S., Ijspeert, A., Floreano, D. (2018). Haptic Guidance with a Soft Exoskeleton Reduces Error in Drone Teleoperation. In: Prattichizzo, D., Shinoda, H., Tan, H., Ruffaldi, E., Frisoli, A. (eds) Haptics: Science, Technology, and Applications. EuroHaptics 2018. Lecture Notes in Computer Science(), vol 10894. Springer, Cham. https://doi.org/10.1007/978-3-319-93399-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93399-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93398-6

  • Online ISBN: 978-3-319-93399-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics