Skip to main content

Exploring Plants Strategies for Allelochemical Detoxification

  • Chapter
  • First Online:
Advances in Plant Ecophysiology Techniques

Abstract

The success of allelopathic plants is characterized by the releases of allelochemicals that suppress the growth of receiver plants directly and indirectly, due to concomitant effects on their microbiome. Therefore, negative effects of allelochemicals on microorganisms can enhance repercussions on plants. On the other hand, plants exposed to allelochemicals develop strategies to eliminate, detoxify or degrade the compounds, whereby plants can take advantage of metabolic properties of microorganisms associated with the root surface and the rhizosphere. Peroxidases and glucosyltransferases have important functions in those processes. In this chapter, methods are presented which allow an estimation of the extent of microbiome damage due to allelochemicals (signature lipid biomarker analysis combined with next generation sequencing). Assays for the determination of glucosyltransferases and peroxidases, important enzyme classes in detoxification processes, are presented with emphasis on benzoxazolinone detoxification as an example for the involvement of microorganisms in reaction sequences. Finally, methods to study alterations in the composition of cell wall polymers are presented as cell wall polymers can be modified during detoxification reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agblevor FA, Murden A, Hames BR (2004) Improved method of analysis of biomass sugars using high-performance liquid chromatography. Biotechnol Lett 26:1207–1210

    Article  CAS  PubMed  Google Scholar 

  • Albers SV, Van de Vossenberg JL, Driessen AJ, Konings WN (2000) Adaptations of the archaeal cell membrane to heat stress. Front Biosci 5:813–820

    Article  Google Scholar 

  • Anders N, Humann H, Langhans B, Spiess AC (2015) Simultaneous determination of acid-soluble biomass-derived compounds using high performance anion exchange chromatography coupled with pulsed amperometric detection. Anal Methods 7:7866–7873. https://doi.org/10.1039/C5AY01371B

    Article  CAS  Google Scholar 

  • Anders N, Schelden M, Roth S, Spiess AC (2017) Automated chromatographic laccase-mediator-system activity assay. Anal Bioanal Chem 409(20):4801–4809

    Google Scholar 

  • Baerson SR, Sánchez-Moreiras AM, Pedrol-Bonjoch N, Schulz M, Kagan IN, Agarwal AK, Reigosa MJ, Duke SO (2005) Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolinone. J Biol Chem 280:21867–21881

    Article  CAS  PubMed  Google Scholar 

  • Benning C, Somerville CR (1992) Isolation and genetic complementation of a sulfolipid-deficient mutant of Rhodobacter sphaeroides. J Bacteriol Parasitol 174:2352–2360

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Browse J, McCourt PJ, Somerville CR (1986) Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal Biochem 152:141–145

    Article  CAS  PubMed  Google Scholar 

  • Buyer JS, Sasser M (2012) High throughput phospholipid fatty acid analysis of soils. Appl Soil Ecol 61:127–130

    Article  Google Scholar 

  • Chen K, Sorek H, Zimmermann H, Wemmer DE, Pauly M (2013) Solution-state 2D NMR spectroscopy of plant cell walls enabled by a dimethylsulfoxide-d6/1-ethyl-3-methylimidazolium acetate solvent. Anal Chem 85:3213–3221

    Article  CAS  Google Scholar 

  • Courty PE, Labbe´ J, Kohler A, Marcxais B, Bastien CJ, Churin JL, Garbaye J, Le Tacon F (2011) Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots. J Exp Bot 62:249–260

    Article  CAS  PubMed  Google Scholar 

  • Cowie GL, Hedges JI (1984) Determination of neutral sugars in plankton, sediments, and wood by capillary gas chromatography of equilibrated isomeric mixtures. Anal Chem 56:497–504

    Article  CAS  Google Scholar 

  • Cuerten C, Anders N, Juchem N, Ihling N, Volkenborn K, Knapp A, Jaeger KE, Buechs J, Spiess AC (2018) Fast automated online xylanase activity assay using HPAEC-PAD. Anal Bioanal Chem 410(1):57–69

    Google Scholar 

  • Foster CE, Martin TM, Pauly M (2010a) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part I: lignin. J Vis Exp 37:e1837. https://doi.org/10.3791/1745

    Article  CAS  Google Scholar 

  • Foster CE, Martin TM, Pauly M (2010b) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates. J Vis Exp 37:e1837. https://doi.org/10.3791/1837

    Article  CAS  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625

    Article  CAS  Google Scholar 

  • Haghi Kia S, Schulz M, Ayah E, Schouten A, Müllenborn C, Paetz C, Schneider B, Hofmann D, Disko U, Tabaglio V, Marocco A (2014) Abutilon theophrasti’s defense against the allelochemical benzoxazolin-2(3h)-one: support by Actinomucor elegans. J Chem Ecol 40:1286–1298

    Article  CAS  Google Scholar 

  • Hamilton JG, Comai K (1988) Separation of neutral lipid, free fatty acid and phospholipid classes by normal phase HPLC. Lipids 23:1150–1153

    Article  CAS  PubMed  Google Scholar 

  • Ikeda S, Rallos LEE, Okubo T, Eda S, Inaba S, Mitsui H, Minamisawa K (2008) Microbial community analysis of field-grown soybeans with different nodulation phenotypes. Appl Environ Microbiol 74:5704–5709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahn MU, Williams JP (1977) Improved thin-layer chromatographic method for the separation of major phospholipids and glycolipids from plant lipid extracts and phosphatidyl glycerol and bis(monoacylglyceryl) phosphate from animal lipid extracts. J Chromatogr 140:179–185

    Article  Google Scholar 

  • Kim HY, Salem N (1990) Separation of lipid classes by solid phase extraction. J Lipid Res 31:2285–2289

    PubMed  CAS  Google Scholar 

  • Kruse J, Abraham M, Amelung W, Baum C, Bol R, Kühn O, Lewandowski H, Niederberger J, Oelmann Y, Rüger C, Santner J, Siebers M, Siebers N, Spohn M, Vestergren J, Vogts A, Santner J (2015) Innovative methods in soil phosphorus research: a review. J Plant Nutr Soil Sci 178:43–88

    Article  CAS  Google Scholar 

  • Medeiros PM, Simoneit BRT (2007) Analysis of sugars in environmental samples by gas chromatography – mass spectrometry. J Chrom A 1141:271–278

    Article  CAS  Google Scholar 

  • Pagé AP, Yergeau É, Greer CW (2015) Salix purpurea stimulates the expression of specific bacterial xenobiotic degradation genes in a soil contaminated with hydrocarbons. PLoS One 10(7):e0132062. https://doi.org/10.1371/journal.pone.0132062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Picart P, Liu H, Grande PM, Anders N, Zhu L, Klankermayer J, Leitner W, Domínguez de María P, Schwaneberg U, Schallmey A (2017) Multi-step biocatalytic depolymerization of lignin. Appl Microbiol Biotechnol 101(15):6277–6287

    Google Scholar 

  • Schulz M, Wieland I (1999) Variation in metabolism of BOA among species in various field communities – biochemical evidence for co-evolutionary processes in plant communities? Chemoecology 9:133–141

    Article  CAS  Google Scholar 

  • Schulz M, Knop M, Muellenborn C, Steiner U (2013) Root-associated microorganisms prevent caffeine accumulation in shoots of Salvia officinalis L. Int J Agric Forest 3:152–158

    Google Scholar 

  • Schulz M, Filary B, Kühn S, Colby T, Harzen A, Schmidt J, Sicker D, Hennig D, Hofmann D, Disko U, Anders N (2016a) Benzoxazolinone detoxification by N-glucosylation: the multi-compartment-network of Zea mays L. Plant Sign Behav 11:e1119962. https://doi.org/10.1080/15592324.2015.1119962

    Article  CAS  Google Scholar 

  • Schulz M, Kant S, Colby T, Harzen A, Schmidt J, Sicker D, Pourmoayyed P (2016b) Zea mays glucosyltransferase BX9 - an essential enzyme for benzoxazolinone detoxification. JAI 2:25–38

    Google Scholar 

  • Schulz M, Sicker D, Schackow O, Hennig L, Hofmann D, Disko U, Ventura M, Basyuk K (2017a) 6-Hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one—A degradable derivative of natural 6-Hydroxybenzoxazolin-2(3H)-one produced by Pantoea ananatis. Commun Integr Biol 10:e1302633. https://doi.org/10.1080/19420889.2017.1302633

  • Schulz M, Sicker D, Schackow O, Hennig L, Yurkov A, Siebers M, Hofmann D, Disko U, Ganimede C, Mondani L, Tabaglio V, Marocco A (2017b) Cross-cooperations of Abutilon theophrasti Medik. and root surface colonizing microorganisms disarm phytotoxic hydroxy-benzoxazolin- 2(3H)-ones. Plant Signal Behav 12(8):e1358843. https://doi.org/10.1080/15592324.2017.1358843

  • Siebers M, Brands M, Wewer V, Duan HG, Dörmann P (2016) Lipids in plant–microbe interactions. Biochim Biophys Acta 1861:1379–1395

    Article  CAS  PubMed  Google Scholar 

  • Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agr Food Chem 58:9043–9053

    Article  CAS  Google Scholar 

  • Sluiter AD, Hames B, Ruiz RO, Scarlata CJ, Sluiter JB, Templeton DW, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass, laboratory analytical procedure. In: NREL/TP-510-42618

    Google Scholar 

  • Venturelli S, Belz RG, Kämper A, Berger A, von Horn K, Wegner A, Böcker A, Zabulon G, Langenecker T, Kohlbacher O, Barneche F, Weigel D, Lauer UM, Bitzer M, Becker C (2015) Plants release precursors of histone deacetylase inhibitors to suppress growth of competitors. Plant Cell 27:3175–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viell J, Inouye H, Szekely NK, Frielinghaus H, Marks C, Wang Y, Anders N, Spiess AC, Makowski L (2016) Multi-scale processes of beech wood disintegration and pretreatment with 1-ethyl-3-methylimidazolium acetate/water mixtures. Biotechnol Biofuels 9(1):7

    Google Scholar 

  • Wang C-M, Li T-C, Jhan Y-L, Weng J-H, Chou C-H (2013) The impact of microbial biotransformation of catechin in enhancing the allelopathic effects of Rhododendron formosanum. PLoS One 8(12):e85162. https://doi.org/10.1371/journal.pone.0085162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welti R, Wang X (2004) Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Curr Opin Plant Biol 7:337–344

    Article  CAS  PubMed  Google Scholar 

  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE, Rajashekar CB, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002

    Article  CAS  PubMed  Google Scholar 

  • Wewer V, Dombrink I, vom Dorp K, Dörmann P (2011) Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. J Lipid Res 52:1039–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White DC, Meadows P, Eglinton G, Coleman ML (1993) In situ measurement of microbial biomass, community structure and nutritional status and discussion. Phil Trans R Soc Lond Ser A 344:59–67

    Article  CAS  Google Scholar 

  • Wu JR, James DW, Dooner HK, Browse J (1994) A mutant of Arabidopsis deficient in the elongation of palmitic acid. Plant Physiol 106:143–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fert Soils 29:111–129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margot Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulz, M., Siebers, M., Anders, N. (2018). Exploring Plants Strategies for Allelochemical Detoxification. In: Sánchez-Moreiras, A., Reigosa, M. (eds) Advances in Plant Ecophysiology Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-93233-0_23

Download citation

Publish with us

Policies and ethics