Skip to main content

Automatic Chinese Reading Comprehension Grading by LSTM with Knowledge Adaptation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10937))

Abstract

Owing to the subjectivity of graders and the complexity of assessment standard, grading is a tough problem in the field of education. This paper presents an algorithm for automatic grading of open-ended Chinese reading comprehension questions. Due to the high complexity of feature engineering and the lack of consideration for word order in frequency based word embedding models, we utilize long-short term memory recurrent neural network to extract semantic feature in student answers automatically. In addition, we also try to impose the knowledge adaptation from web corpus to student answers, and represent the students’ responses to vectors which are fed into the memory network. Along this line, the workload of teacher and the subjectivity in reading comprehension grading can both be reduced obviously. What’s more, the automatic grading methods for Chinese reading comprehension will be more thorough. The experimental results on five Chinese and two English data sets demonstrate the superior performance over compared baselines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/fxsjy/jieba.

  2. 2.

    http://scikit-learn.org/stable/index.html.

  3. 3.

    https://www.kaggle.com/c/asap-sas/data.

  4. 4.

    https://radimrehurek.com/gensim/index.html.

  5. 5.

    https://dumps.wikimedia.org/.

References

  1. Bailey, S., Meurers, D.: Diagnosing meaning errors in short answers to reading comprehension questions. In: Proceedings of the Third Workshop on Innovative Use of NLP for Building Educational Applications, pp. 107–115. Association for Computational Linguistics (2008)

    Google Scholar 

  2. Basu, S., Jacobs, C., Vanderwende, L.: Powergrading: a clustering approach to amplify human effort for short answer grading. Trans. Assoc. Comput. Linguist. 1, 391–402 (2013)

    Google Scholar 

  3. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3(6), 1137–1155 (2003)

    MATH  Google Scholar 

  4. Boer, P.T.D., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)

    Article  MathSciNet  Google Scholar 

  5. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

  6. Dunne, R.A., Campbell, N.A.: On the pairing of the softmax activation and cross-entropy penalty functions and the derivation of the softmax activation function. In: Proceedings of the 8th Australian Conference on the Neural Networks, Melbourne, vol. 185, p. 181 (1997)

    Google Scholar 

  7. Dzikovska, M.O., Nielsen, R.D., Brew, C.: Towards effective tutorial feedback for explanation questions: a dataset and baselines. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 200–210. Association for Computational Linguistics (2012)

    Google Scholar 

  8. Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649. IEEE (2013)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Horbach, A., Palmer, A., Pinkal, M.: Using the text to evaluate short answers for reading comprehension exercises. In: * SEM@ NAACL-HLT, pp. 286–295 (2013)

    Google Scholar 

  11. Hou, W.-J., Tsao, J.-H., Li, S.-Y., Chen, L.: Automatic assessment of students’ free-text answers with support vector machines. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010. LNCS (LNAI), vol. 6096, pp. 235–243. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13022-9_24

    Chapter  Google Scholar 

  12. Jimenez, S., Becerra, C.J., Gelbukh, A.F., Bátiz, A.J.D., Mendizábal, A.: Softcardinality: hierarchical text overlap for student response analysis. In: SemEval@ NAACL-HLT, pp. 280–284 (2013)

    Google Scholar 

  13. Jones, K.S.: A statistical interpretation of term specificity and its application in retrieval. J. Doc. 60(5), 493–502 (2013)

    Article  Google Scholar 

  14. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. AAAI 333, 2267–2273 (2015)

    Google Scholar 

  16. Lui, A.K.-F., Lee, L.-K., Lau, H.-W.: Automated grading of short literal comprehension questions. In: Lam, J., Ng, K.K., Cheung, S.K.S., Wong, T.L., Li, K.C., Wang, F.L. (eds.) ICTE 2015. CCIS, vol. 559, pp. 251–262. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48978-9_23

    Chapter  Google Scholar 

  17. Madnani, N., Burstein, J., Sabatini, J., O’Reilly, T.: Automated scoring of a summary-writing task designed to measure reading comprehension. In: BEA@ NAACL-HLT, pp. 163–168 (2013)

    Google Scholar 

  18. Meurers, D., Ziai, R., Ott, N., Bailey, S.M.: Integrating parallel analysis modules to evaluate the meaning of answers to reading comprehension questions. Int. J. Contin. Eng. Educ. Life Long Learn. 21(4), 355–369 (2011)

    Article  Google Scholar 

  19. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  21. Mnih, A., Hinton, G.: Three new graphical models for statistical language modelling. In: Proceedings of the 24th International Conference on Machine Learning, pp. 641–648. ACM (2007)

    Google Scholar 

  22. Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA, Valletta, Malta, May 2010

    Google Scholar 

  23. Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network for sentiment classification. In: EMNLP, pp. 1422–1432 (2015)

    Google Scholar 

  24. Wang, H.C., Chang, C.Y., Li, T.Y.: Assessing creative problem-solving with automated text grading. Comput. Educ. 51(4), 1450–1466 (2008)

    Article  Google Scholar 

  25. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

  26. Zesch, T., Levy, O., Gurevych, I., Dagan, I.: UKP-BIU: similarity and entailment metrics for student response analysis, Atlanta, Georgia, USA, p. 285 (2013)

    Google Scholar 

  27. Zhang, Y., Shah, R., Chi, M.: Deep learning + student modeling + clustering: a recipe for effective automatic short answer grading. In: EDM, pp. 562–567 (2016)

    Google Scholar 

  28. Zhila, A., Yih, W.t., Meek, C., Zweig, G., Mikolov, T.: Combining heterogeneous models for measuring relational similarity. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1000–1009 (2013)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61773361, 61473273), the Youth Innovation Promotion Association CAS 2017146, the China Postdoctoral Science Foundation (No. 2017M610054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Yang or Fuzhen Zhuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Y., Yang, X., Zhuang, F., Zhang, L., Yu, S. (2018). Automatic Chinese Reading Comprehension Grading by LSTM with Knowledge Adaptation. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10937. Springer, Cham. https://doi.org/10.1007/978-3-319-93034-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93034-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93033-6

  • Online ISBN: 978-3-319-93034-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics