Skip to main content

Expressing Measurement Uncertainty in OCL/UML Datatypes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10890))

Abstract

Uncertainty is an inherent property of any measure or estimation performed in any physical setting, and therefore it needs to be considered when modeling systems that manage real data. Although several modeling languages permit the representation of measurement uncertainty for describing certain system attributes, these aspects are not normally incorporated into their type systems. Thus, operating with uncertain values and propagating uncertainty are normally cumbersome processes, difficult to achieve at the model level. This paper proposes an extension of OCL and UML datatypes to incorporate data uncertainty coming from physical measurements or user estimations into the models, along with the set of operations defined for the values of these types.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Operations on basic datatypes normally use infix notation (e.g., \(x+y\), \(a<b\), \(P \ {\texttt {and}}\ Q\)). This is the notation that we already support in our USE implementation for the newly defined types (UReal, UBoolean, etc.), see Sect. 3.7. However, other languages that we have used to implement these new types (e.g., Java) do not support infix notation. Therefore, in the following we will use either an infix or prefix notation (x.add(y), a.lt(b), P.and(Q)) for the operations of these types, depending on the context and on the particular language used.

  2. 2.

    http://atenea.lcc.uma.es/downloads/uncertainOCLTypes/use-5.0.0_extended.zip.

References

  1. America, P.: Inheritance and subtyping in a parallel object-oriented language. In: Bézivin, J., Hullot, J.-M., Cointe, P., Lieberman, H. (eds.) ECOOP 1987. LNCS, vol. 276, pp. 234–242. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47891-4_22

    Chapter  Google Scholar 

  2. Bertoa, M.F., Moreno, N., Barquero, G., Burgueño, L., Troya, J., Vallecillo, A.: Uncertain OCL Datatypes, April 2018. http://atenea.lcc.uma.es/projects/UncertainOCLTypes.html

  3. Broy, M.: Challenges in modeling cyber-physical systems. In: Proceedings of the ISPN 2013, pp. 5–6. IEEE (2013)

    Google Scholar 

  4. Büttner, F., Gogolla, M.: On OCL-based imperative languages. Sci. Comput. Program. 92, 162–178 (2014)

    Article  Google Scholar 

  5. Eramo, R., Pierantonio, A., Rosa, G.: Managing uncertainty in bidirectional model transformations. In: Proceedings of SLE 2015, pp. 49–58. ACM (2015)

    Google Scholar 

  6. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 214–238. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5_9

    Chapter  Google Scholar 

  7. Famelis, M., Salay, R., Chechik, M.: Partial models: towards modeling and reasoning with uncertainty. In: Proceedings of ICSE 2012, pp. 573–583. IEEE Press (2012)

    Google Scholar 

  8. Garlan, D.: Software engineering in an uncertain world. In: Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research (FoSER 2010), pp. 125–128. ACM (2010)

    Google Scholar 

  9. Gogolla, M., Büttner, F., Richters, M.: USE: a UML-based specification environment for validating UML and OCL. Sci. Comp. Prog. 69, 27–34 (2007)

    Article  MathSciNet  Google Scholar 

  10. Gogolla, M., Hilken, F.: Model validation and verification options in a contemporary UML and OCL analysis tool. In: Oberweis, A., Reussner, R. (eds.) Proceedings of the Modellierung (MODELLIERUNG 2016). LNI, vol. 254, pp. 203–218. GI (Gesellschaft für Informatik), Karlsruhe (2016)

    Google Scholar 

  11. Hall, B.D.: Component interfaces that support measurement uncertainty. Comput. Stand. Interfaces 28(3), 306–310 (2006)

    Article  Google Scholar 

  12. JCGM 100:2008: Evaluation of measurement data - Guide to the expression of uncertainty in measurement (GUM). Joint Committee for Guides in Metrology (2008). http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

  13. JCGM 101:2008: Evaluation of measurement data - Supplement 1 to the “Guide to the expression of uncertainty in measurement” - Propagation of distributions using a Monte Carlo method. Joint Committee for Guides in Metrology (2008). http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf

  14. JCGM 200:2012: International Vocabulary of Metrology - Basic and general concepts and associated terms (VIM), 3rd edn. Joint Committee for Guides in Metrology (2012). http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf

  15. Jiménez-Ramírez, A., Weber, B., Barba, I., del Valle, C.: Generating optimized configurable business process models in scenarios subject to uncertainty. Inf. Softw. Technol. 57, 571–594 (2015)

    Article  Google Scholar 

  16. Kosko, B.: Fuzziness vs. probability. Int. J. Gen. Syst. 17(2–3), 211–240 (1990)

    Article  Google Scholar 

  17. Lee, E.A.: Cyber physical systems: design challenges. In: Proceedings of ISORC 2008, pp. 363–369. IEEE (2008)

    Google Scholar 

  18. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst. 16(6), 1811–1841 (1994)

    Article  Google Scholar 

  19. Littlewood, B., Neil, M., Ostrolenk, G.: The role of models in managing the uncertainty of software-intensive systems. Reliab. Eng. Syst. Saf. 50(1), 87–95 (1995)

    Article  Google Scholar 

  20. Mayerhofer, T., Wimmer, M., Burgueño, L., Vallecillo, A.: Specifying quantities in software models (2018, submitted). Technical report: http://atenea.lcc.uma.es/index.php/Main_Page/Resources/DataUncertainty

  21. Object Management Group: Object Constraint Language (OCL) Specification. Version 2.2, February 2010. OMG Document formal/2010-02-01

    Google Scholar 

  22. Object Management Group: UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems. Version 1.1, June 2011. OMG Document formal/2011-06-02

    Google Scholar 

  23. Object Management Group: Unified Modeling Language (UML) Specification. Version 2.5, March 2015. OMG Document formal/2015-03-01

    Google Scholar 

  24. Object Management Group: OMG Systems Modeling Language (SysML), Version 1.4, January 2016. OMG Document formal/2016-01-05

    Google Scholar 

  25. Object Management Group: Structured Metrics Metamodel (SMM) Specification. Version 1.1.1, April 2016. OMG Document formal/16-04-04

    Google Scholar 

  26. Salay, R., Chechik, M., Horkoff, J., Sandro, A.: Managing requirements uncertainty with partial models. Requir. Eng. 18(2), 107–128 (2013)

    Article  Google Scholar 

  27. Selic, B.: Beyond mere logic - a vision of modeling languages for the 21st century. In: Proceeding of MODELSWARD 2015 and PECCS 2015, p. IS–5. SciTePress (2015)

    Google Scholar 

  28. Vallecillo, A., Morcillo, C., Orue, P.: Expressing measurement uncertainty in software models. In: Proceedings of the 10th International Conference on the Quality of Information and Communications Technology (QUATIC), pp. 1–10 (2016)

    Google Scholar 

  29. Wikipedia: List of uncertainty propagation software. https://en.wikipedia.org/wiki/List_of_uncertainty_propagation_software. Accessed 13 Apr 2018

  30. Wolf, M.: A modeling language for measurement uncertainty evaluation. Ph.D. thesis, ETH Zurich (2009)

    Google Scholar 

  31. Zhang, M., Ali, S., Yue, T., Norgren, R., Okariz, O.: Uncertainty-wise cyber-physical system test modeling. Softw. Syst. Model. (2017). https://doi.org/10.1007/s10270-017-0609-6

  32. Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., Norgren, R.: Understanding uncertainty in cyber-physical systems: a conceptual model. In: Wąsowski, A., Lönn, H. (eds.) ECMFA 2016. LNCS, vol. 9764, pp. 247–264. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42061-5_16

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish Government under Grant TIN2014-52034-R. We would like to thank Martin Gogolla for his help and support during the development of the USE tool extension, and to the reviewers for their constructive comments and very valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Vallecillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bertoa, M.F., Moreno, N., Barquero, G., Burgueño, L., Troya, J., Vallecillo, A. (2018). Expressing Measurement Uncertainty in OCL/UML Datatypes. In: Pierantonio, A., Trujillo, S. (eds) Modelling Foundations and Applications. ECMFA 2018. Lecture Notes in Computer Science(), vol 10890. Springer, Cham. https://doi.org/10.1007/978-3-319-92997-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92997-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92996-5

  • Online ISBN: 978-3-319-92997-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics