Skip to main content

The Red Sea: Israel

  • Chapter
  • First Online:
Mesophotic Coral Ecosystems

Part of the book series: Coral Reefs of the World ((CORW,volume 12))

Abstract

The mesophotic coral ecosystems (MCEs) of Eilat, in the Northern Red Sea, are among the best-studied worldwide, as demonstrated by the high number of publications from the region. Nonetheless, Eilat’s MCEs remain relatively unexplored compared to its shallow reefs. Its MCEs host diverse benthic communities that are potentially linked ecologically to shallow reefs. Here, we summarize the history of MCE research and compare the shallow and mesophotic reefs using long-term biotic and abiotic data. Eilat’s MCEs exhibit lower fluctuations in temperature, light, sedimentation, and a decreased frequency of shore-related disturbances than adjacent shallow reefs, supporting the hypothesis that key environmental parameters become more stable with increasing depth. However, nutrient concentrations are more variable in MCEs than nearby shallow reefs. We provide a novel definition of the upper (30–80 m) and lower (80–160 m) mesophotic zone boundaries in Eilat, based on the degree of light penetration, as well as the relative abundance of major fauna and flora. Scleractinian coral diversity increases with depth, as well as the abundance of specialist taxa. Corals (93 spp.) comprise the major organisms contributing to living benthic cover. A mass coral-bleaching event took place in 2015 that exclusively affected MCEs, and we discuss the event’s potential mechanisms and consequences for shallow vs. mesophotic coral assemblages. Protection and regulations of MCEs are needed to maintain and support these unique ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbey E, Webster JM, Beaman RJ (2011) Geomorphology of submerged reefs on the shelf edge of the Great Barrier Reef: the influence of oscillating Pleistocene sea-levels. Mar Geol 288:61–78

    Google Scholar 

  • Abbey E, Webster J, Braga J, Jacobsen G, Thorogood G, Thomas A, Camoin G, Reimer P, Potts D (2013) Deglacial mesophotic reef demise on Great Barrier Reef. Palaeogeogr Palaeoclimatol Palaeoecol 392:473–494

    Google Scholar 

  • Alamaru A, Loya Y, Brokovich E, Yam R, Shemesh A (2009) Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: insights from stable isotope analysis of total organic material and lipids. Geochim Cosmochim Acta 73:5333–5342

    CAS  Google Scholar 

  • Andradi-Brown D, Laverick J, Bejarano I, Bridge T, Colin P, Eyal G, Jones R, Kahng S, Reed J, Smith T, Spalding H, Weil E, Wood E (2016) Threats to mesophotic coral ecosystems and management options. In: Baker E, Puglise K, Harris P (eds) Mesophotic coral ecosystems—a lifeboat for coral reefs. United Nations Environment Programme and GRID-Arendal, Nairobi, pp 67–82

    Google Scholar 

  • Baker E, Puglise K, Harris P (eds) (2016) Mesophotic coral ecosystems—a lifeboat for coral reefs. The United Nations Environment Programme and GRID-Arendal, Nairobi/Arendal, 98 p

    Google Scholar 

  • Baker PA, Weber JN (1975) Coral growth rate: variation with depth. Phys Earth Planet Inter 10:135–139

    Google Scholar 

  • Ben-Zvi O, Eyal G, Loya Y (2015) Light-dependent fluorescence in the coral Galaxea fascicularis. Hydrobiologia 759:15–26

    Google Scholar 

  • Benayahu Y, McFadden CS, Shoham E (2017a) Search for mesophotic octocorals (Cnidaria, Anthozoa) and their phylogeny: I. A new sclerite-free genus from Eilat, Northern Red Sea. ZooKeys 680:1

    Google Scholar 

  • Benayahu Y, McFadden CS, Shoham E, van Ofwegen LP (2017b) Search for mesophotic octocorals (Cnidaria, Anthozoa) and their phylogeny. II. A new zooxanthellate species from Eilat, Northern Red Sea. ZooKeys 676:1

    Google Scholar 

  • Benayahu Y, Bridge TCL, Colin PL, Liberman R, McFadden C, Pizarro O, Schleyer MH, Shoham E, Reijnen B, Weis M, Tanaka J (2019) Octocorals of the Indo-Pacific. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 709–728

    Google Scholar 

  • Biton E, Gildor H (2011) The general circulation of the Gulf of Aqaba (Gulf of Eilat) revisited: the interplay between the exchange flows through the Straits of Tiran and surface fluxes. J Geophys Res Oceans 116:C08020

    Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo E, Hoegh-Guldberg O (2010) Assessing the “Deep Reef Refuge” hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Google Scholar 

  • Bongaerts P, Riginos C, Brunner R, Englebert N, Smith SR, Hoegh-Guldberg O (2017) Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci Adv 3:e1602373

    Article  Google Scholar 

  • Bongaerts P, Smith TB (2019) Beyond the “Deep Reef Refuge” hypothesis: a conceptual framework to characterize persistence at depth. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 881–895

    Google Scholar 

  • Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden basins. J Afr Earth Sci 43:334–378

    Google Scholar 

  • Bridge TC, Hughes TP, Guinotte JM, Bongaerts P (2013) Call to protect all coral reefs. Nat Clim Chang 3:528–530

    Google Scholar 

  • Brokovich E, Einbinder S, Kark S, Shashar N, Kiflawi M (2007) A deep nursery for juveniles of the zebra angelfish Genicanthus caudovittatus. Environ Biol Fish 80:1–6

    Google Scholar 

  • Brokovich E, Einbinder S, Shashar N, Kiflawi M, Kark S (2008) Descending to the twilight-zone: changes in coral reef fish assemblages along a depth gradient down to 65 m. Mar Ecol Prog Ser 371:253–262

    Google Scholar 

  • Brokovich E, Ben-Ari T, Kark S, Kiflawi M, Dishon G, Iluz D, Shashar N (2010a) Functional changes of the visual system of the damselfish Dascyllus marginatus along its bathymetric range. Physiol Behav 101:413–421

    CAS  PubMed  Google Scholar 

  • Brokovich E, Ayalon I, Einbinder S, Segev N, Shaked Y, Genin A, Kark S, Kiflawi M (2010b) Grazing pressure on coral reefs decreases across a wide depth gradient in the Gulf of Aqaba, Red Sea. Mar Ecol Prog Ser 399:69–80

    Google Scholar 

  • Cherbonnier G (1980) Holothuries de Nouvelle-Calédonie. Bulletin du Museum National d’Historie Naturelles de Belgique 44:1–50

    Google Scholar 

  • Dafni J (2008) Diversity and recent changes in the echinoderm Fauna of the Gulf of Aqaba with emphasis on the regular echinoids. In: Por D (ed) Aqaba-Eilat, the improbable gulf environment, biodiversity and preservation. Magnes Press Jerusalem, Jerusalem, pp 225–242

    Google Scholar 

  • Daniel A (2006) Niche adaptation of coral and its zooxanthellae over a depth gradient of 5–65 m in the Gulf of Eilat. Tel-Aviv University, 79 p

    Google Scholar 

  • Dubinsky Z, Stambler N, Ben-Zion M, McCloskey L, Muscatine L, Falkowski P (1990) The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proc R Soc Lond B Biol Sci 239:231–246

    Google Scholar 

  • Einbinder S, Mass T, Brokovich E, Dubinsky Z, Erez J, Tchernov D (2009) Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar Ecol Prog Ser 381:167–174

    Google Scholar 

  • Einbinder S, Gruber DF, Salomon E, Liran O, Keren N, Tchernov D (2016) Novel adaptive photosynthetic characteristics of mesophotic symbiotic microalgae within the reef-building coral, Stylophora pistillata. Front Mar Sci 3:195

    Google Scholar 

  • Eyal-Shaham L, Eyal G, Tamir R, Loya Y (2016) Reproduction, abundance and survivorship of two Alveopora spp. in the mesophotic reefs of Eilat, Red Sea. Sci Rep 6:20964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eyal G (2012) Ecology and taxonomy of mesophotic communities in Israel (Red Sea and Mediterranean). Tel Aviv University, 64 p

    Google Scholar 

  • Eyal G, Loya Y (2016) Mesophotic Reefs Examined: Eilat, Red Sea, Israel. In: Baker E, Puglise K, Harris P (eds) Mesophotic coral ecosystems—a lifeboat for Coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi/Arendal, pp 28–30

    Google Scholar 

  • Eyal G, Eyal-Shaham L, Loya Y (2011) “Teeth-anchorage:” sleeping behavior of a Red Sea filefish on a branching coral. Coral Reefs 30:707

    Google Scholar 

  • Eyal G, Eyal-Shaham L, Cohen I, Tamir R, Ben-Zvi O, Sinniger F, Loya Y (2016) Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35:91–102

    Google Scholar 

  • Eyal G, Wiedenmann J, Grinblat M, D’Angelo C, Kramarsky-Winter E, Treibitz T, Ben-Zvi O, Shaked Y, Smith TB, Harii S, Denis V, Noyes T, Tamir R, Loya Y (2015) Spectral diversity and regulation of coral fluorescence in a mesophotic reef habitat in the Red Sea. PLoS ONE. 10:e0128697

    PubMed  PubMed Central  Google Scholar 

  • Feldman B, Shlesinger T, Loya Y (2018) Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea. Coral Reefs 37(1):201–214

    Google Scholar 

  • Fine M, Gildor H, Genin A (2013) A coral reef refuge in the Red Sea. Glob Chang Biol 19:3640–3647

    PubMed  Google Scholar 

  • Fishelson L (1971) Ecology and distribution of the benthic fauna in the shallow waters of the Red Sea. Mar Biol 10:113–133

    Google Scholar 

  • Fishelson L (2009) Red Sea explorations by Israeli zoologists 1950–2009. The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, 94 p. http://smnh.tau.ac.il/upload/Red%20Sea%20Explorations%2026.2022.pdf

  • Frade PR, De Jongh F, Vermeulen F, Van Bleijswijk J, Bak RP (2008) Variation in symbiont distribution between closely related coral species over large depth ranges. Mol Ecol 17:691–703

    CAS  Google Scholar 

  • Fricke H (1996) Deep-water exploration of the Red Sea by submersible. In: Uiblein F, Ott J, Stachowitsch M (eds) Deep-sea and extreme and shallow-water habitats: affinities and adaptations, Biosystematics and Ecology Series 11. Österreichische Akademie der Wissenschaften, Wien, pp 67–89

    Google Scholar 

  • Fricke H, Hottinger L (1983) Coral bioherms below the euphotic zone in the Red Sea. Mar Ecol Prog Ser Oldendorf 11:113–117

    Google Scholar 

  • Fricke H, Knauer B (1986) Diversity and spatial pattern of coral communities in the Red Sea upper twilight zone. Oecologia 71:29–37

    CAS  PubMed  Google Scholar 

  • Fricke H, Vareschi E, Schlichter D (1987) Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Oecologia 73:371–381

    CAS  PubMed  Google Scholar 

  • Fricke HW, Schuhmacher H (1983) The depth limits of Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible). Mar Ecol 4:163–194

    Google Scholar 

  • Genin A, Lazar B, Brenner S (1995) Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo. Nature 377:507–510

    CAS  Google Scholar 

  • Glynn PW, Manzello DP (2015) Bioerosion and coral reef growth: a dynamic balance. In: Coral reefs in the Anthropocene. Springer, Dordrecht, pp 67–97

    Google Scholar 

  • Goudie A, Middleton N (2001) Saharan dust storms: nature and consequences. Earth Sci Rev 56:179–204

    CAS  Google Scholar 

  • Grottoli AG, Tchernov D, Winters G (2017) Physiological and biogeochemical responses of super-corals to thermal stress from the northern Gulf of Aqaba, Red Sea. Front Mar Sci 4:215

    Google Scholar 

  • Gutner-Hoch E, Fine M (2011) Genotypic diversity and distribution of Ostreobium quekettii within scleractinian corals. Coral Reefs 30:643–650

    Google Scholar 

  • Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL, Appeldoorn R (2010) Theme section on “Mesophotic coral ecosystems: characterization, ecology and management.” Coral Reefs 29(2):247–251

    Google Scholar 

  • Kahng S, García-Sais J, Spalding H, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen R (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Google Scholar 

  • Kaiser P, Schlichter D, Fricke H (1993) Influence of light on algal symbionts of the deep water coral Leptoseris fragilis. Mar Biol 117:45–52

    Google Scholar 

  • Katz T, Ginat H, Eyal G, Steiner Z, Braun Y, Shalev S, Goodman-Tchernov B (2015) Desert flash floods form hyperpycnal flows in the coral-rich Gulf of Aqaba, Red Sea. Earth Planet Sci Lett 417:87–98

    CAS  Google Scholar 

  • Kirk JT (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Kramer N, Eyal G, Tamir R, Loya Y (2019) Upper mesophotic depths in the coral reefs of Eilat, Red Sea, offer suitable refuge grounds for coral settlement. Sci Rep 9:2663

    Google Scholar 

  • Krueger T, Horwitz N, Bodin J, Giovani M-E, Escrig S, Meibom A, Fine M (2017) Common reef-building coral in the Northern Red Sea resistant to elevated temperature and acidification. R Soc Open Sci 4:170038

    PubMed  PubMed Central  Google Scholar 

  • Langodan S, Cavaleri L, Viswanadhapalli Y, Hoteit I (2014) The Red Sea: a natural laboratory for wind and wave modeling. J Phys Oceanogr 44:3139–3159

    Google Scholar 

  • Loya Y (1972) Community structure and species diversity of hermatypic corals at Eilat, Red Sea. Mar Biol 13:100–123

    Google Scholar 

  • Loya Y (1976) Recolonization of Red Sea corals affected by natural catastrophes and man-made perturbations. Ecology 57:278–289

    Google Scholar 

  • Loya Y (2004) The coral reefs of Eilat—past, present and future: three decades of coral community structure studies. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, pp 1–34

    Google Scholar 

  • Loya Y (2007) How to influence environmental decision makers? The case of Eilat (Red Sea) coral reefs. J Exp Mar Biol Ecol 344:35–53

    Google Scholar 

  • Loya Y, Slobodkin LB (1971) The coral reefs of Eilat (Gulf of Eilat, Red Sea). Symp Zool Soc Lond 28:117–139

    Google Scholar 

  • Loya Y, Rinkevich B (1980) Effects of oil pollution on coral reef communities. Mar Ecol Prog Ser 3:167–180

    Google Scholar 

  • Loya Y, Eyal G, Treibitz T, Lesser MP, Appeldoorn R (2016) Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs 35:1–9

    Google Scholar 

  • Manasrah R, Badran M, Lass HU, Fennel W (2004) Circulation and winter deep-water formation in the Northern Red Sea. Oceanologia 46(1):5–23

    Google Scholar 

  • Mass T, Einbinder S, Brokovich E, Shashar N, Vago R, Erez J, Dubinsky Z (2007) Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser 334:93–102

    CAS  Google Scholar 

  • Mass T, Kline D, Roopin M, Veal C, Cohen S, Iluz D, Levy O (2010) The spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea. J Exp Biol 213:4084–4091

    CAS  PubMed  Google Scholar 

  • Nir O, Gruber D, Einbinder S, Kark S, Tchernov D (2011) Changes in scleractinian coral Seriatopora hystrix morphology and its endocellular Symbiodinium characteristics along a bathymetric gradient from shallow to mesophotic reef. Coral Reefs 30:1089

    Google Scholar 

  • Nir O, Gruber DF, Shemesh E, Glasser E, Tchernov D (2014) Seasonal mesophotic coral bleaching of Stylophora pistillata in the Northern Red Sea. PLoS ONE 9:e84968

    PubMed  PubMed Central  Google Scholar 

  • NMP (2004–2016) Israel National Monitoring Program at the Gulf of Eilat Scientific Reports. The Interuniversity Institute for Marine Sciences in Eilat (IUI). http://www.iui-eilat.ac.il/Research/NMPAbout.aspx

  • Price N (2010) Habitat selection, facilitation, and biotic settlement cues affect distribution and performance of coral recruits in French Polynesia. Oecologia 163:747–758

    PubMed  PubMed Central  Google Scholar 

  • Puglise K, Hinderstein L, Marr J, Dowgiallo M, Martinez F (2009) Mesophotic coral ecosystems research strategy: international workshop to prioritize research and management needs for mesophotic coral ecosystems, Jupiter, Florida, 12–15 July 2008. NOAA Technical Memorandum NOS NCCOS 98 and OAR OER 2, 24 p

    Google Scholar 

  • Schlichter D, Fricke H (1990) Coral host improves photosynthesis of endosymbiotic algae. Naturwissenschaften 77:447–450

    Google Scholar 

  • Schlichter D, Fricke H (1991) Mechanisms of amplification of photosynthetically active radiation in the symbiotic deep-water coral Leptoseris fragilis. Hydrobiologia 216:389–394

    Google Scholar 

  • Schlichter D, Fricke H, Weber W (1986) Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone. Mar Biol 91:403–407

    Google Scholar 

  • Setchell WA (1930) Biotic cementation in coral reefs. Proc Natl Acad Sci 16:781–783

    CAS  PubMed  Google Scholar 

  • Shaked Y, Genin A (2011) Red Sea and Gulf of Aqaba encyclopedia of modern coral reefs. Springer, Dordrecht/New York, pp 839–843

    Google Scholar 

  • Sharon Y, Levitan O, Spungin D, Berman-Frank I, Beer S (2011) Photoacclimation of the seagrass Halophila stipulacea to the dim irradiance at its 48-meter depth limit. Limnol Oceanogr 56:357–362

    Google Scholar 

  • Shenkar N, Zeldman Y, Loya Y (2008) Ascidian recruitment patterns on an artificial reef in Eilat (Red Sea). Biofouling 24:119–128

    PubMed  Google Scholar 

  • Shlesinger T, Grinblat M, Rapuano H, Amit T, Loya Y (2018) Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99:421–437

    PubMed  Google Scholar 

  • Shlesinger T, Loya Y (2019) Sexual reproduction of scleractinian corals in mesophotic coral ecosystems vs. shallow reefs. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 653–666

    Google Scholar 

  • Shoham E, Benayahu Y (2017) Higher species richness of octocorals in the upper mesophotic zone in Eilat (Gulf of Aqaba) compared to shallower reef zones. Coral Reefs 36:71–81

    Google Scholar 

  • Smith EG, D’Angelo C, Sharon Y, Tchernov D, Wiedenmann J (2017) Acclimatization of symbiotic corals to mesophotic light environments through wavelength transformation by fluorescent protein pigments. Proc R Soc B 284:20170320

    PubMed  Google Scholar 

  • Stambler N, Levy O, Vaki L (2008) Photosynthesis and respiration of hermatypic zooxanthellate Red Sea corals from 5–75-m depth. Isr J Plant Sci 56:45–53

    CAS  Google Scholar 

  • Sverdrup H (1953) On vernal blooming of phytoplankton. J Conseil Exp Mer 18:287–295

    Google Scholar 

  • Tamir R (2015) Spatial and seasonal dynamics of the light field in the Gulf of Aqaba (Eilat). Bar-Ilan University, 57 p

    Google Scholar 

  • Tamir R, Lerner A, Haspel C, Dubinsky Z, Iluz D (2017) The spectral and spatial distribution of light pollution in the waters of the northern Gulf of Aqaba (Eilat). Sci Rep 7:42329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tibor G, Niemi TM, Ben-Avraham Z, Al-Zoubi A, Sade RA, Hall JK, Hartman G, Akawi E, Abueladas A, Al-Ruzouq R (2010) Active tectonic morphology and submarine deformation of the northern Gulf of Eilat/Aqaba from analyses of multibeam data. Geo-Mar Lett 30:561–573

    Google Scholar 

  • Turner JA, Babcock RC, Hovey R, Kendrick GA (2017) Deep thinking: a systematic review of mesophotic coral ecosystems. ICES J Mar Sci 74(9):2309–2320

    Google Scholar 

  • Weinstein DK, Maher B, Correa AMS (2019) Bioerosion. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 829–847

    Google Scholar 

  • Wielgus J, Glassom D, Chadwick NE (2006) Patterns of polychaete worm infestation of stony corals in the Northern Red Sea and relationships to water chemistry. Bull Mar Sci 78:377–388

    Google Scholar 

  • Wilhelmsson D, Öhman MC, Ståhl H, Shlesinger Y (1998) Artificial reefs and dive tourism in Eilat, Israel. Ambio 27:764–766

    Google Scholar 

  • Winters G, Edelist D, Shem-Tov R, Beer S, Rilov G (2017) A low cost field-survey method for mapping seagrasses and their potential threats: an example from the northern Gulf of Aqaba, Red Sea. Aquat Conserv Mar Freshwat Ecosyst 27:324–339

    Google Scholar 

  • Yahel R, Yahel G, Genin A (2002) Daily cycles of suspended sand at coral reefs: a biological control. Limnol Oceanogr 47:1071–1083

    Google Scholar 

  • Yao F, Hoteit I, Pratt LJ, Bower AS, Zhai P, Köhl A, Gopalakrishnan G (2014) Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation. J Geophys Res Oceans 119:2238–2262

    Google Scholar 

  • Zarubin M, Lindemann Y, Genin A (2017) The dispersion-confinement mechanism: phytoplankton dynamics and the spring bloom in a deeply-mixing subtropical sea. Prog Oceanogr 155:13–27

    Google Scholar 

  • Ziegler M, Roder CM, Büchel C, Voolstra CR (2015) Mesophotic coral depth acclimatization is a function of host-specific symbiont physiology. Front Mar Sci 2:4

    Google Scholar 

Download references

Acknowledgments

We thank the Interuniversity Institute for Marine Sciences (IUI) in Eilat for making their facilities available to us. We are grateful to N. Paz for editing the manuscript, Y. Shaked and O. Ben-Shaprut for diving assistance, and all of YL’s lab members for their support. We thank T. Bridge, E. Brokovich, J. Turner, and an anonymous reviewer for their useful comments on an earlier version of this chapter. GE was supported by the Israel Taxonomy Initiative (ITI) and Sciences-Based Management (SBM) Doctoral Fellowships. This research was funded by the Israel Science Foundation (ISF) Grants No. 341/12 and 1191/16 to YL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gal Eyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eyal, G., Tamir, R., Kramer, N., Eyal-Shaham, L., Loya, Y. (2019). The Red Sea: Israel. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems. Coral Reefs of the World, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_11

Download citation

Publish with us

Policies and ethics