Skip to main content

Hearing in Rodents

  • Chapter
  • First Online:
Rodent Bioacoustics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 67))

Abstract

Hearing in rodents has been measured using both behavioral and physiological methods. Features of hearing that have been measured in rodents include auditory acuity in quiet and in noise, frequency selectivity and sensitivity, intensity resolution, temporal resolution, and complex sound perception. Generally, and especially for simple tone detection, behavioral thresholds are lower than physiological thresholds. Within behavioral studies, operant experiments using awake, behaving rodents produce lower thresholds than simple reflexive measures. Rodents generally have broader frequency filters than other mammals. Frequency and intensity resolution are similar but slightly elevated relative to other mammals. The few measures of complex sound perception performed to date show that at least some rodents have the capacity to distinguish between spectrotemporal characteristics of acoustic signals for communication. Most studies have typically employed domesticated laboratory rodents rather than wild-caught species, so few attempts have been made to correlate lifestyle and evolutionary history with auditory processing. Nonetheless, a baseline knowledge of hearing abilities in rodents will facilitate experiments on the perception of more complex, natural acoustic stimuli in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beach, F. A. (1950). The snark was a boojum. American Psychologist, 5(4), 115–124.

    Article  Google Scholar 

  • Begall, S., Burda, H., & Schneider, B. (2004). Hearing in coruros (Spalacopus cyanus): Special audiogram features of a subterranean rodent. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 190(11), 963–969.

    PubMed  Google Scholar 

  • Behrens, D., & Klump, G. M. (2015). Comparison of the sensitivity of prepulse inhibition of the startle reflex and operant conditioning in an auditory intensity difference limen paradigm. Hearing Research, 321(1), 35–44.

    Article  PubMed  Google Scholar 

  • Birch, L., Warfield, D., Ruben, R., & Mikaelian, D. (1968). Behavioral measurements of pure tone thresholds in normal CBA-J mice. Journal of Auditory Research, 8(1), 459–468.

    Google Scholar 

  • Blumstein, D. T., & Armitage, K. B. (1997). Does sociality drive the evolution of communicative complexity? A comparative test with ground-dwelling sciurid alarm calls. The American Naturalist, 150(2), 179–200.

    Article  PubMed  CAS  Google Scholar 

  • Blumstein, D. T., & Daniel, J. C. (2004). Yellow-bellied marmots discriminate between the alarm calls of individuals and are more responsive to calls from juveniles. Animal Behaviour, 68(6), 1257–1265.

    Article  Google Scholar 

  • Borg, E. (1982). Auditory thresholds in rats of different age and strain. A behavioral and electrophysiological study. Hearing Research, 8(2), 101–115.

    Article  PubMed  CAS  Google Scholar 

  • Brand, A., Urban, R., & Grothe, B. (2000). Duration tuning in the mouse auditory midbrain. Journal of Neurophysiology, 84(4), 1790–1799.

    Article  PubMed  CAS  Google Scholar 

  • Brown, C. H., & Sinnott, J. M. (2006). Cross-species comparisons of vocal perception. In S. Greenberg & W. A. Ainsworth (Eds.), Listening to speech: An auditory perspective (pp. 183–201). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Bruckmann, G., & Burda, H. (1997). Hearing in blind subterranean Zambian mole-rats (Cryptomys sp.): Collective behavioural audiogram in a highly social rodent. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 181(1), 83–88.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, A. R., Resnik, J., Yuan, Y., Whitton, J. P., et al. (2016). Central gain restores auditory processing following near-complete cochlear denervation. Neuron, 89(4), 867–879.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheatham, M., Huynh, K., Gao, J., Zuo, J., & Dallos, P. (2004). Cochlear function in Prestin knockout mice. The Journal of Physiology, 560(3), 821–830.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Church, R. M., Getty, D. J., & Lerner, N. D. (1976). Duration discrimination by rats. Journal of Experimental Psychology: Animal Behavior Processes, 2(4), 303. https://doi.org/10.1037/0097-7403.2.4.303

    PubMed  CAS  Google Scholar 

  • Cooke, J. E., Zhang, H., & Kelly, J. B. (2007). Detection of sinusoidal amplitude modulated sounds: Deficits after bilateral lesions of auditory cortex in the rat. Hearing Research, 231(1), 90–99.

    Article  PubMed  Google Scholar 

  • Dang, R., Torigoe, D., Suzuki, S., Kikkawa, Y., et al. (2011). Genetic background strongly modifies the severity of symptoms of Hirschsprung disease, but not hearing loss in rats carrying Ednrb sl mutations. PLoS One, 6(9), e24086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eddins, A. C., Salvi, R. J., Wang, J., & Powers, N. L. (1998). Threshold-duration functions of chinchilla auditory nerve fibers. Hearing Research, 119(1), 135–141.

    Article  Google Scholar 

  • Ehret, G. (1974). Age-dependent hearing loss in normal hearing mice. Naturwissenschaften, 61(11), 506–507.

    Google Scholar 

  • Ehret, G. (1975). Frequency and intensity difference limens and nonlinearities in the ear of the housemouse (Mus musculus). Journal of Comparative Physiology, 102(4), 321–336.

    Article  Google Scholar 

  • Ehret, G. (1976). Temporal auditory summation for pure tones and white noise in the house mouse (Mus musculus). The Journal of the Acoustical Society of America, 59(6), 1421–1427.

    Article  PubMed  CAS  Google Scholar 

  • Ehret, G., & Haack, B. (1981). Categorical perception of mouse pup ultrasound by lactating females. Naturwissenschaften, 68(4), 208–209.

    Article  PubMed  CAS  Google Scholar 

  • Ehret, G., & Haack, B. (1982). Ultrasound recognition in the house mouse: Key-stimulus configuration and recognition mechanism. Journal of Comparative Physiology, 148(2), 245–251.

    Article  Google Scholar 

  • Fay, R. R. (1974). Auditory frequency discrimination in vertebrates. The Journal of the Acoustical Society of America, 56(1), 206–209.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R. (1988). Hearing in vertebrates: A psychophysics databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Felsheim, C., & Ostwald, J. (1996). Responses to exponential frequency modulations in the rat inferior colliculus. Hearing Research, 98(1), 137–151.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Y., Wang, J., & Yin, S. (2007). General anesthesia changes gap-evoked auditory responses in guinea pigs. Acta Oto-Laryngologica, 127(2), 143–148.

    Article  PubMed  CAS  Google Scholar 

  • Floody, O. R., & Kilgard, M. P. (2007). Differential reductions in acoustic startle document the discrimination of speech sounds in rats. The Journal of the Acoustical Society of America, 122(4), 1884–1887.

    Article  PubMed  Google Scholar 

  • Floody, O. R., Ouda, L., Porter, B. A., & Kilgard, M. P. (2010). Effects of damage to auditory cortex on the discrimination of speech sounds by rats. Physiology and Behavior, 101(2), 260–268. https://doi.org/10.1016/j.physbeh.2010.05.009

    Article  PubMed  CAS  Google Scholar 

  • Francis, R. L. (1979). The preyer reflex audiogram of several rodents, and its relation to the "absolute" audiogram in the rat. Journal of Auditory Research, 19(3), 217–233.

    PubMed  CAS  Google Scholar 

  • Gaese, B. H., & Ostwald, J. (1995). Temporal coding of amplitude and frequency modulation in the rat auditory cortex. European Journal of Neuroscience, 7(3), 438–450.

    Article  PubMed  CAS  Google Scholar 

  • Gaese, B. H., King, I., Felsheim, C., Ostwald, J., & von der Behrens, W. (2006). Discrimination of direction in fast frequency-modulated tones by rats. Journal of the Association for Research in Otolaryngology, 7(1), 48–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaese, B. H., Nowotny, M., & Pilz, P. K. (2009). Acoustic startle and prepulse inhibition in the Mongolian gerbil. Physiology and Behavior, 98(4), 460–466.

    Article  PubMed  CAS  Google Scholar 

  • Giraudi-Perry, D., Salvi, R., & Henderson, D. (1982). Gap detection in hearing-impaired chinchillas. The Journal of the Acoustical Society of America, 72(5), 1387–1393.

    Article  PubMed  CAS  Google Scholar 

  • Gleich, O., Kittel, M. C., Klump, G. M., & Strutz, J. (2007). Temporal integration in the gerbil: The effects of age, hearing loss and temporally unmodulated and modulated speech-like masker noises. Hearing Research, 224(1), 101–114.

    Article  PubMed  Google Scholar 

  • Gourevitch, G. (1965). Auditory masking in the rat. The Journal of the Acoustical Society of America, 37(3), 439–443.

    Article  PubMed  CAS  Google Scholar 

  • Hack, M. H. (1971). Auditory intensity discrimination in the rat. Journal of Comparative and Physiological Psychology, 74(2), 315–318.

    Article  PubMed  CAS  Google Scholar 

  • Hall III, J. W., & Grose, J. H. (1990). Comodulation masking release and auditory grouping. The Journal of the Acoustical Society of America, 88(1), 119–125.

    Article  PubMed  Google Scholar 

  • Halpern, D. L., & Dallos, P. (1986). Auditory filter shapes in the chinchilla. The Journal of the Acoustical Society of America, 80(3), 765–775.

    Article  PubMed  CAS  Google Scholar 

  • Hamann, I., Gleich, O., Klump, G. M., Kittel, M. C., et al. (2002). Behavioral and evoked-potential thresholds in young and old Mongolian gerbils (Meriones unguiculatus). Hearing Research, 171(1-2), 82–95.

    Article  PubMed  Google Scholar 

  • Hare, J. F. (1998). Juvenile Richardson's ground squirrels discriminate among individual alarm callers. Animal Behaviour, 55(2), 451–460.

    Article  PubMed  CAS  Google Scholar 

  • Heffner, H., & Masterton, B. (1980). Hearing in glires: Domestic rabbit, cotton rat, feral house mouse, and kangaroo rat. The Journal of the Acoustical Society of America, 68(6), 1584–1599.

    Article  Google Scholar 

  • Heffner, H. E., & Heffner, R. S. (1985). Hearing in two cricetid rodents: Wood rat (Neotoma floridana) and grasshopper mouse (Onychomys leucogaster). Journal of Comparative Psychology, 99(3), 275–288.

    Article  PubMed  CAS  Google Scholar 

  • Heffner, H. E., & Heffner, R. S. (2001). Behavioral assessment of hearing in mice. In J. F. Willott (Ed.), Handbook of mouse auditory research (pp. 19–30). New York: CRC Press.

    Chapter  Google Scholar 

  • Heffner, H. E., Heffner, R. S., Contos, C., & Ott, T. (1994). Audiogram of the hooded Norway rat. Hearing Research, 73(2), 244–247.

    Article  PubMed  CAS  Google Scholar 

  • Heffner, R., Heffner, H., & Masterton, B. (1971). Behavioral measurements of absolute and frequency-difference thresholds in guinea pig. The Journal of the Acoustical Society of America, 49(6), 1888–1895.

    Article  PubMed  CAS  Google Scholar 

  • Heffner, R. S., & Heffner, H. E. (1990). Vestigial hearing in a fossorial mammal, the pocket gopher (Geomys bursarius). Hearing Research, 46(3), 239–252.

    Article  PubMed  CAS  Google Scholar 

  • Heffner, R. S., & Heffner, H. E. (1991). Behavioral hearing range of the chinchilla. Hearing Research, 52(1), 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Heffner, R. S., & Heffner, H. E. (1993). Degenerate hearing and sound localization in naked mole rats (Heterocephalus glaber), with an overview of central auditory structures. The Journal of Comparative Neurology, 331(3), 418–433.

    Article  PubMed  CAS  Google Scholar 

  • Heffner, R. S., Heffner, H. E., Contos, C., & Kearns, D. (1994). Hearing in prairie dogs—transition between surface and subterranean rodents. Hearing Research, 73(2), 185–189.

    Google Scholar 

  • Heffner, R. S., Koay, G., & Heffner, H. E. (2001). Audiograms of five species of rodents: Implications for the evolution of hearing and the perception of pitch. Hearing Research, 157(1-2), 138–152.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, D. (1969). Temporal summation of acoustic signals by the chinchilla. The Journal of the Acoustical Society of America, 46(2), 474–475.

    Article  PubMed  CAS  Google Scholar 

  • Hershenhoren, I., & Nelken, I. (2016). Detection of tones masked by fluctuating noise in rat auditory cortex. Cerebral Cortex, 27(11), 5130–5143.

    Google Scholar 

  • Holfoth, D. P., Neilans, E. G., & Dent, M. L. (2014). Discrimination of partial from whole ultrasonic vocalizations using a go/no-go task in mice. The Journal of the Acoustical Society of America, 136(6), 3401–3409.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmstrom, L. A., Eeuwes, L. B. M., Roberts, P. D., & Portfors, C. V. (2010). Efficient encoding of vocalizations in the auditory midbrain. The Journal of Neuroscience, 30(3), 802–819.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Honma, Y., Tsukano, H., Horie, M., Ohshima, S., et al. (2013). Auditory cortical areas activated by slow frequency-modulated sounds in mice. PLoS One, 8(7), e68113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson, L. L., Heffner, H. E., & Heffner, R. S. (1997). Audiogram of the fox squirrel (Sciurus niger). Journal of Comparative and Physiological Psychology, 111(1), 100–104.

    Google Scholar 

  • Kelly, J. B. (1970). The effects of lateral lemniscal and neocortical lesions on auditory absolute thresholds and frequency difference thresholds of the rat. Ph.D. dissertation, Vanderbilt University, Nashville, TN. ProQuest Information & Learning

    Google Scholar 

  • Kelly, J. B., & Masterton, B. (1977). Auditory sensitivity of the albino rat. Journal of Comparative and Physiological Psychology, 91(4), 930–936.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, J. B., Cooke, J. E., Gilbride, P. C., Mitchell, C., & Zhang, H. (2006). Behavioral limits of auditory temporal resolution in the rat: Amplitude modulation and duration discrimination. Journal of Comparative Psychology, 120(2), 98–105.

    Article  PubMed  Google Scholar 

  • King, J., Insanally, M., Jin, M., Martins, A. R. O., et al. (2015). Rodent auditory perception: Critical band limitations and plasticity. Neuroscience, 296(1), 55–65.

    Article  PubMed  CAS  Google Scholar 

  • Kittel, M., Wagner, E., & Klump, G. M. (2002). An estimate of the auditory-filter bandwidth in the Mongolian gerbil. Hearing Research, 164(1), 69–76.

    Article  PubMed  Google Scholar 

  • Klinge, A., & Klump, G. M. (2008). Frequency difference limens of pure tones and harmonics within complex stimuli in Mongolian gerbils and humans. The Journal of the Acoustical Society of America, 125(1), 304–314.

    Article  Google Scholar 

  • Klink, K. B., & Klump, G. M. (2004). Duration discrimination in the mouse (Mus musculus). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 190(12), 1039–1046.

    Article  PubMed  Google Scholar 

  • Klink, K. B., Dierker, H., Beutelmann, R., & Klump, G. M. (2010). Comodulation masking release determined in the mouse (Mus musculus) using a flanking-band paradigm. Journal of the Association for Research in Otolaryngology, 11(1), 79–88.

    Article  PubMed  Google Scholar 

  • Koay, G., Heffner, R. S., & Heffner, H. E. (2002). Behavioral audiograms of homozygous med J mutant mice with sodium channel deficiency and unaffected controls. Hearing Research, 171(1), 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Kobayasi, K. I., Usami, A., & Riquimaroux, H. (2012). Behavioral evidence for auditory induction in a species of rodent: Mongolian gerbil (Meriones unguiculatus). The Journal of the Acoustical Society of America, 132(6), 4063–4068.

    Article  PubMed  Google Scholar 

  • Kobrina, A., & Dent, M. L. (2016). The effects of aging and sex on detection of ultrasonic vocalizations by adult CBA/CaJ mice (Mus musculus). Hearing Research, 341(1), 119–129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobrina, A., Toal, K., & Dent, M. L. (2018). Intensity difference limens in adult CBA/CaJ mice (Mus musculus). Behavioural Processes, 148(1), 46–48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koeppl, J. W., Hoffmann, R. S., & Nadler, C. F. (1978). Pattern analysis of acoustical behavior in four species of ground squirrels. Journal of Mammalogy, 59(4), 677–696.

    Article  Google Scholar 

  • Krishna, B. S., & Semple, M. N. (2000). Auditory temporal processing: Responses to sinusoidally amplitude-modulated tones in the inferior colliculus. Journal of Neurophysiology, 84(1), 255–273.

    Article  PubMed  CAS  Google Scholar 

  • Kuhl, P. K. (1981). Discrimination of speech by nonhuman animals: Basic auditory sensitivities conducive to the perception of speech-sound categories. The Journal of the Acoustical Society of America, 70(2), 240–249.

    Article  Google Scholar 

  • Kuhl, P. K., & Miller, J. D. (1975). Speech perception by the chinchilla: Voiced-voiceless distinction in alveolar plosive consonants. Science, 190(4209), 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Kulig, J., & Willott, J. F. (1984). Frequency difference limens of C57BL/6 and DBA/2 mice: Relationship to auditory neuronal response properties and hearing impairment. Hearing Research, 16(2), 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Lauer, A. M., Behrens, D., & Klump, G. (2017). Acoustic startle modification as a tool for evaluating auditory function of the mouse: Progress, pitfalls, and potential. Neuroscience and Biobehavioral Reviews, 77, 194–208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lina, I. A., & Lauer, A. M. (2013). Rapid measurement of auditory filter shape in mice using the auditory brainstem response and notched noise. Hearing Research, 298(1-2), 73–79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Long, G. R., & Clark, W. W. (1984). Detection of frequency and rate modulation by the chinchilla. The Journal of the Acoustical Society of America, 75(4), 1184–1190.

    Article  PubMed  CAS  Google Scholar 

  • Long, G. R., & Miller, J. D. (1981). Tone-on-tone masking in the chinchilla. Hearing Research, 4(3), 279–285.

    Article  PubMed  CAS  Google Scholar 

  • May, B. J., Kimar, S., & Prosen, C. A. (2006). Auditory filter shapes of CBA/CaJ mice: Behavioral assessments. The Journal of the Acoustical Society of America, 120(1), 321–330.

    Article  PubMed  Google Scholar 

  • McGee, T., Ryan, A., & Dallos, P. (1976). Psychophysical tuning curves of chinchillas. The Journal of the Acoustical Society of America, 60(5), 1146–1150.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. D. (1964). Auditory sensitivity of the chinchilla in quiet and in noise. The Journal of the Acoustical Society of America, 36(10), 2010.

    Article  Google Scholar 

  • Miller, J. D. (1970). Audibility curve of the chinchilla. The Journal of the Acoustical Society of America, 48(2), 513–523.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, C., & Fowler, C. (1980). Tuning curves of cochlear and brainstem responses in the guinea pig. The Journal of the Acoustical Society of America, 68(3), 896–900.

    Article  PubMed  CAS  Google Scholar 

  • Muller, M., & Burda, H. (1989). Restricted hearing range in a subterranean rodent, Cryptomys hottentotus. Naturwissenschaften, 76(3), 134–135.

    Article  PubMed  CAS  Google Scholar 

  • Muller, M., von Hunerbein, K., Hoidis, S., & Smolders, J. W. (2005). A physiological place-frequency map of the cochlea in the CBA/J mouse. Hearing Research, 202(1-2), 63–73.

    Article  PubMed  Google Scholar 

  • Naguib, M. (1997). Use of song amplitude for ranging in Carolina wrens, Thryothorus ludovicianus. Ethology, 103(9), 723–731.

    Article  Google Scholar 

  • Nakano, R., Nakagawa, R., Tokimoto, N., & Okanoya, K. (2013). Alarm call discrimination in a social rodent: Adult but not juvenile degu calls induce high vigilance. Journal of Ethology, 31(2), 115–121.

    Article  Google Scholar 

  • Neilans, E. G., Holfoth, D. P., Radziwon, K. E., Portfors, C. V., & Dent, M. L. (2014). Discrimination of ultrasonic vocalizations by CBA/CaJ mice is related to spectrotemporal dissimilarity of vocalizations. PLoS One, 9(1), e85405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nelson, D. A., & Kiester, T. E. (1978). Frequency discrimination in the chinchilla. The Journal of the Acoustical Society of America, 64(1), 114–128.

    Article  PubMed  CAS  Google Scholar 

  • Noriot, E. (1972). Ultrasounds and maternal behavior in small rodents. Developmental Psychobiology, 5(4), 371–387.

    Article  Google Scholar 

  • Noto, M., Nishikawa, J., Tateno, T. (2016). An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex. Neuroscience, 318, 58–83.

    Article  PubMed  CAS  Google Scholar 

  • Ohlemiller, K. K., Jones, L. B., Heidbreder, A. F., Clark, W. W., & Miller, J. D. (1999). Voicing judgments by chinchillas trained with a reward paradigm. Behavioural Brain Research, 100(1-2), 185–195.

    Article  PubMed  CAS  Google Scholar 

  • Palombi, P. S., Backoff, P. M., & Caspary, D. M. (2001). Responses of young and aged rat inferior colliculus neurons to sinusoidally amplitude modulated stimuli. Hearing Research, 153(1), 174–180.

    Article  Google Scholar 

  • Panyutina, A. A., Kuznetsov, A. N., Volodin, I. A., Abramov, A. V., & Soldatova, I. B. (2016). A blind climber: The first evidence of ultrasonic echolocation in arboreal mammals. Integrative Zoology, 12(2), 172–184.

    Article  Google Scholar 

  • Polak, M., Eshraghi, A. A., Nehme, O., Ahsan, S., et al. (2004). Evaluation of hearing and auditory nerve function by combining ABR, DPOAE and eABR tests into a single recording session. Journal of Neuroscience Methods, 134(2), 141–149.

    Article  PubMed  Google Scholar 

  • Popelar, J., Groh, D., Pelánová, J., Canlon, B., & Syka, J. (2006). Age-related changes in cochlear and brainstem auditory functions in Fischer 344 rats. Neurobiology of Aging, 27(3), 490–500.

    Article  PubMed  Google Scholar 

  • Porter, B. A., Rosenthal, T. R., Ranasinghe, K. G., & Kilgard, M. P. (2011). Discrimination of brief speech sounds is impaired in rats with auditory cortex lesions. Behavioural Brain Research, 219(1), 68–74.

    Article  PubMed  Google Scholar 

  • Pressnitzer, D., Meddis, R., Delahaye, R., & Winter, I. M. (2001). Physiological correlates of comodulation masking release in the mammalian ventral cochlear nucleus. The Journal of Neuroscience, 21(16), 6377–6386.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Prosen, C. A., Petersen, M. R., Moody, D. B., & Stebbins, W. C. (1978). Auditory thresholds and kanamycin-induced hearing loss in the guinea pig assessed by a positive reinforcement procedure. The Journal of the Acoustical Society of America, 63(2), 559–566.

    Article  PubMed  CAS  Google Scholar 

  • Prosen, C. A., Halpern, D. L., & Dallos, P. (1988). Frequency difference limens in normal and sensorineural hearing impaired chinchillas. The Journal of the Acoustical Society of America, 85(3), 1302–1313.

    Article  Google Scholar 

  • Prosen, C. A., Dore, D. J., & May, B. J. (2003). The functional age of hearing loss in a mouse model of presbycusis. I. Behavioral assessments. Hearing Research, 183(1), 44–56.

    Article  PubMed  Google Scholar 

  • Radziwon, K. E., & Dent, M. L. (2014). Frequency difference limens and auditory cue trading in CBA/CaJ mice. Behavioural Processes, 106(1), 74–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Radziwon, K. E., June, K. M., Stolzberg, D. J., Xu-Friedman, M. A., et al. (2009). Behaviorally measured audiograms and gap detection thresholds in CBA/CaJ mice. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 195(10), 961–969.

    Article  Google Scholar 

  • Radziwon, K. E., Stolzberg, D. J., Urban, M. E., Bowler, R. A., & Salvi, R. J. (2015). Salicylate-induced hearing loss and gap detection deficits in rats. Frontiers in Neurology, 6, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ralls, K. (1967). Auditory sensitivity in mice: Peromyscus and Mus musculus. Animal Behaviour, 15(1), 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Ranasinghe, K. G., Vrana, W. A., Matney, C. J., & Kilgard, M. P. (2012). Neural mechanisms supporting robust discrimination of spectrally and temporally degraded speech. Journal of the Association for Research in Otolaryngology, 13(4), 527–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan, A., Dallos, P., & McGee, T. (1979). Psychophysical tuning curves and auditory thresholds after hair cell damage in the chinchilla. The Journal of the Acoustical Society of America, 66(2), 370–378.

    Article  PubMed  CAS  Google Scholar 

  • Salvi, R. J., & Arehole, S. (1985). Gap detection in chinchillas with temporary high-frequency hearing loss. The Journal of the Acoustical Society of America, 77(3), 1173–1177.

    Article  PubMed  CAS  Google Scholar 

  • Salvi, R., Ahroon, W., Perry, J., Gunnarson, A., & Henderson, D. (1982). Comparison of psychophysical and evoked-potential tuning curves in the chinchilla. American Journal of Otolaryngology, 3(6), 408–416.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, J. C., Dolgin, K. G., & Lowry, L. D. (1980). The maturation of frequency selectivity in C57BL/6J mice studied with auditory evoked response tuning curves. Brain Research, 187(1), 69–79.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, S. S., Shivapuja, B. G., & Salvi, R. J. (1987). Auditory intensity discrimination in the chinchilla. The Journal of the Acoustical Society of America, 82(5), 1604–1607.

    Article  PubMed  CAS  Google Scholar 

  • Scholes, C., Palmer, A. R., & Sumner, C. J. (2015). Stream segregation in the anesthetized auditory cortex. Hearing Research, 328(1), 48–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schooneveldt, G. P., & Moore, B. C. (1987). Comodulation masking release (CMR): Effects of signal frequency, flanking-band frequency, masker bandwidth, flanking-band level, and monotonic versus dichotic presentation of the flanking band. The Journal of the Acoustical Society of America, 82(6), 1944–1956.

    Article  PubMed  CAS  Google Scholar 

  • Schulze, H., & Langner, G. (1997). Representation of periodicity pitch in the primary auditory cortex of the Mongolian gerbil. Acta Oto-Laryngologica, 117(Suppl. 532), 89–95.

    Article  Google Scholar 

  • Screven, L. A., & Dent, M. L. (2016). Discrimination of frequency-modulated sweeps by laboratory mice. The Journal of the Acoustical Society of America, 137(4), 1481–1487.

    Article  Google Scholar 

  • Seaton, W. H., & Trahiotis, C. (1975). Comparison of critical ratios and critical bands in the monaural chinchilla. The Journal of the Acoustical Society of America, 57(1), 193–199.

    Article  PubMed  CAS  Google Scholar 

  • Shannon, R. V., Zheng, F. G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech recognition with primarily temporal cues. Science, 270(5234), 303–307.

    Article  PubMed  CAS  Google Scholar 

  • Shofner, W. P. (2014). Perception of degraded speech sounds differs in chinchilla and human listeners. The Journal of the Acoustical Society of America, 135(4), 2065–2077.

    Article  PubMed  Google Scholar 

  • Shriner, W. M. (1998). Yellow-bellied marmot and golden-mantled ground squirrel responses to heterospecific alarm calls. Animal Behaviour, 55(3), 529–536.

    Article  PubMed  CAS  Google Scholar 

  • Sinnott, J. M., & Mosteller, K. W. (2001). A comparative assessment of speech sound discrimination by the Mongolian gerbil. The Journal of the Acoustical Society of America, 110(4), 1729–1732.

    Article  PubMed  CAS  Google Scholar 

  • Sinnott, J. M., & Mosqueda, S. B. (2003). Effects of aging on speech sound discrimination in the Mongolian gerbil. Ear and Hearing, 24(1), 30–37.

    Article  PubMed  Google Scholar 

  • Sinnott, J. M., Brown, C. H., & Brown, F. E. (1992). Frequency and intensity discrimination in Mongolian gerbils, African monkeys and humans. Hearing Research, 59(2), 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. C. (1976). Responses of adult mice to models of infant calls. Journal of Comparative and Physiological Psychology, 90(12), 1105–1115.

    Article  Google Scholar 

  • Syka, J., & Popelar, J. (1988). Hearing threshold shifts from prolonged exposure to noise in guinea pigs. Hearing Research, 3(3), 205–213.

    Article  Google Scholar 

  • Syka, J., Raybalko, N., Brozek, G., & Jilek, M. (1996). Auditory frequency and intensity discrimination in pigmented rats. Hearing Research, 100(1-2), 107–113.

    Article  PubMed  CAS  Google Scholar 

  • Syka, J., Rybalko, N., Mazelova, J., & Druga, R. (2002). Gap detection threshold in the rat before and after auditory cortex ablation. Hearing Research, 172(1-2), 151–159.

    Article  PubMed  CAS  Google Scholar 

  • Taberner, A. M., & Liberman, M. C. (2005). Response properties of single auditory nerve fibers in the mouse. Journal of Neurophysiology, 93(1), 557–569.

    Article  PubMed  Google Scholar 

  • Talwar, S. K., & Gerstein, G. L. (1998). Auditory frequency discrimination in the white rat. Hearing Research, 126(1-2), 135–150.

    Article  PubMed  CAS  Google Scholar 

  • Viemeister, N. (1996). Auditory temporal integration: What is being accumulated? Current Directions in Psychological Science, 5(1), 28–32.

    Article  Google Scholar 

  • Wagner, E., Klump, G. M., & Hamann, I. (2003). Gap detection in Mongolian gerbils (Meriones unguiculatus). Hearing Research, 176(1-2), 11–16.

    Article  PubMed  Google Scholar 

  • Walton, J., Frisina, R., Ison, J., & O'Neill, W. (1997). Neural correlates of behavioral gap detection in the inferior colliculus of the young CBA mouse. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 181(2), 161–176.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Van Wijhe, R., Chen, Z., & Yin, S. (2006). Is duration tuning a transient process in the inferior colliculus of guinea pigs? Brain Research, 1114(1), 63–74.

    Google Scholar 

  • Wetzel, W., Ohl, F. W., Wagner, T., & Scheich, H. (1998a). Right auditory cortex lesion in Mongolian gerbils impairs discrimination of rising and falling frequency-modulated tones. Neuroscience Letters, 252(2), 115–118.

    Article  PubMed  CAS  Google Scholar 

  • Wetzel, W., Wagner, T., Ohl, F. W., & Scheich, H. (1998b). Categorical discrimination of direction in frequency-modulated tones by Mongolian gerbils. Behavioral Brain Research, 91(1-2), 29–39.

    Article  CAS  Google Scholar 

  • Wood, C. C. (1976). Discriminability, response bias, and phoneme categories in discrimination of voice onset time. The Journal of the Acoustical Society of America, 60(6), 1381–1389.

    Article  PubMed  CAS  Google Scholar 

  • Xu, L., Thompson, C. S., & Pfingst, B. E. (2005). Relative contributions of spectral and temporal cues for phoneme recognition. The Journal of the Acoustical Society of America, 117(5), 3255–3267.

    Article  PubMed  Google Scholar 

  • Yao, J. D., Bremen, P., & Middlebrooks, J. C. (2015). Emergence of spatial stream segregation in the ascending auditory pathway. The Journal of Neuroscience, 35(49), 16199–16212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yost, W. A., & Shofner, W. P. (2009). Critical bands and critical ratios in animal psychoacoustics: An example using chinchilla data. The Journal of the Acoustical Society of America, 125(1), 315–323.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng, Q. Y., Johnson, K. R., & Erway, L. C. (1999). Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hearing Research, 130(1-2), 94–107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The work described here was supported by NIH R03DC009483 and R01DC012302 (Dent). This work would not have been possible if not for the significant contributions of Dr. Kelly Radziwon and numerous undergraduate and graduate students in the Dent Laboratory. Thanks to Dr. Amanda Lauer for helpful comments on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micheal L. Dent .

Editor information

Editors and Affiliations

Ethics declarations

Micheal Dent declares that she has no conflict of interest.

Laurel Screven declares that she has no conflict of interest.

Anastasiya Kobrina declares that she has no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dent, M.L., Screven, L.A., Kobrina, A. (2018). Hearing in Rodents. In: Dent, M., Fay, R., Popper, A. (eds) Rodent Bioacoustics. Springer Handbook of Auditory Research, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-319-92495-3_4

Download citation

Publish with us

Policies and ethics