Skip to main content

Hierarchical Biological Materials

  • Chapter
  • First Online:
Marine Biological Materials of Invertebrate Origin

Part of the book series: Biologically-Inspired Systems ((BISY,volume 13))

  • 911 Accesses

Abstract

Today bioinspiration stimulates the development of new generation of advanced functional materials and constructs with sophisticated architecture and exceptional properties. Due to large diversity, marine invertebrates (i.e. radiolarians; diatoms; molluscs; corals and sponges) are inexhaustible source of inspiration for development of different types of rigid; and flexible materials. Their biomineralized cellular tissues with anastomosing hierarchical complex microstructure combine high strength and stiffness with low weight. Cellular materials can be assumed as multiphase composites that comprise of the fluid and solid phases, while this fluid has gaseous nature. From the morphological point of view, these cellular composites can be divided into 2-D solids, like honeycomb structures comprising hexagonal cells, as well as 3-D foams, like sponges.

One of the main driving forces in studying biological materials from the viewpoint of Materials Science is to use the discovered natural structures and processes as inspiration for developing new materials.

Peter Fratzl

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizenberg J, Fratzl P (2013) New materials through bioinspiration and nanoscience. Adv Funct Mater 23:4398–4399

    Article  CAS  Google Scholar 

  • Ashby MF, Gibson LJ, Wegst U et al (1995) The mechanical-properties of natural materials. 1. Material property charts. Proc R Soc London Ser A – Math Phys Sci 450:123–140

    Article  Google Scholar 

  • Benoiston AS, Ibarbalz FM, Bittner L, Lionel Guidi L et al (2017) The evolution of diatoms and their biogeochemical functions. Philos Trans R Soc Lond Ser B Biol Sci 372(1728):20160397

    Article  CAS  Google Scholar 

  • Berger JB, Wadley HNG, McMeeking RM (2017) Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 543:533–537

    Article  CAS  Google Scholar 

  • Berglund L, Burgert I (2018) Bioinspired wood nanotechnology for functional materials. Adv Mater 30(19):1704285

    Article  CAS  Google Scholar 

  • Bhate D (2019) Four questions in cellular material design. Materials (Basel) 12(7):1060

    Article  Google Scholar 

  • Bhushan B (2009) Biomimetics. Phil Trans R Soc A 367:1443–1444

    Article  Google Scholar 

  • Bigi A, Boanini E (2017) Functionalized biomimetic calcium phosphates for bone tissue repair. J Appl Biomater Funct Mater 15(4):313–325

    Google Scholar 

  • Bowles RD, Setton LA (2018) Biomaterials for intervertebral disc regeneration and repair. Biomaterials 129:54–67

    Article  CAS  Google Scholar 

  • Burgueño R, Quagliata MJ, Mohanty AK et al (2005) Hierarchical cellular designs for load-bearing biocomposite beams and plates. Mater Sci Eng A 390(1–2):178–187

    Article  CAS  Google Scholar 

  • Christian S (2009) Biocomposites for the Construction Industry. Ph.D. Dissertation, Stanford University expected publication

    Google Scholar 

  • Cremaldi JC, Bhushan B (2018) Bioinspired self-healing materials: lessons from nature. Beilstein J Nanotechnol 9:907–935

    Article  CAS  Google Scholar 

  • D’Arcy Thompson W (1942) On growth and form. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Ding F, Liu J, Zeng S et al (2017) Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly. Sci Adv 3:e1701212

    Article  CAS  Google Scholar 

  • Du J, Hao P (2018) Investigation on microstructure of beetle elytra and energy absorption properties of bio-inspired honeycomb thin-walled structure under axial dynamic crushing. Nanomaterials (Basel) 8(9):667

    Article  CAS  Google Scholar 

  • Dunlop JWC, Fratzl P (2013) Multilevel architectures in natural materials. Scr Mater 68:8–12

    Article  CAS  Google Scholar 

  • Dunlop JWC, Fratzl P (2015) Making a tooth mimic. Nat Mater 14(11):1082–1083

    Article  CAS  Google Scholar 

  • Ferrara MA, Dardano P, De Stefano L, Rea I et al (2014) Optical properties of diatom nanostructured biosilica in Arachnoidiscus sp: micro-optics from mother nature. PLoS One 9(7):e103750

    Article  CAS  Google Scholar 

  • Fortes MA, Ashby MF (1999) The effect of non-uniformity on the in-plane modulus of honeycombs. Acta Mater 47:3469–3473

    Article  CAS  Google Scholar 

  • Frank MB, Naleway SE, Wirth TS, Jae-Young Jung JY et al (2016) A protocol for bioinspired design: a ground sampler based on sea urchin jaws. J Vis Exp 110:53554

    Google Scholar 

  • Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52:1263–1334

    Article  CAS  Google Scholar 

  • Fratzl P, Speck T, Gorb S (2016) Function by internal structure-preface to the special issue on bioinspired hierarchical materials. Bioinspir Biomim 11:060301

    Article  Google Scholar 

  • Gagliardi M (2017) Biomimetic and bioinspired nanoparticles for targeted drug delivery. Ther Deliv 8:289–299

    Article  CAS  Google Scholar 

  • Gibson LJ (2005) Biomechanics of cellular solids. J Biomech 38:377–399

    Article  Google Scholar 

  • Gibson LJ, Ashby MF (1988) Cellular solids: structure and properties, 1st edn. Pergamon Press, Oxford

    Google Scholar 

  • Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Gorb S, Speck T (2017) Biological and biomimetic materials and surfaces. Beilstein J Nanotechnol 8:403–407

    Article  CAS  Google Scholar 

  • Gordon R, Losic D, Tiffany MA et al (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27(2):116–127

    Article  CAS  Google Scholar 

  • Grunenfelder LK, Herrera S, Kisailus D (2014) Crustacean-derived biomimetic components and nanostructured composites. Small 10:3207–3232

    Article  CAS  Google Scholar 

  • Grunenfelder LK, Milliron G, Herrera S et al (2018) Ecologically driven ultrastructural and hydrodynamic designs in stomatopod cuticles. Adv Mater 30:1705295

    Article  CAS  Google Scholar 

  • Gu GX, Su I, Sharma S, Voros JL, Qin Z, Markus J, Buehler MJ (2016) Three-dimensional-printing of bio-inspired composites. J Biomech Eng 138(2):0210061–02100616

    Google Scholar 

  • Guiducci L, Fratzl P, Bréchet YJM, Dunlop JWC (2014) Pressurized honeycombs as soft-actuators: a theoretical study. J R Soc Interface 11(101):20141031

    Article  Google Scholar 

  • Guiducci L, Razghandi K, Bertinetti L, Turcaud S et al (2016) Honeycomb actuators inspired by the unfolding of ice plant seed capsules. PLoS One 11(11):e0163506

    Article  CAS  Google Scholar 

  • Hamm CE, Merkel R, Springer O et al (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843

    Article  CAS  Google Scholar 

  • Hench LL, Thompson I (2010) Twenty-first century challenges for biomaterials. J R Soc Interface 7(Suppl 4):S379–S391

    CAS  Google Scholar 

  • Heng L, Meng X, Wang B et al (2013) Bioinspired design of honeycomb structure interfaces with controllable water adhesion. Langmuir 29:9491–9498

    Article  CAS  Google Scholar 

  • Huang FY, Yan BW, Yang DU (2002) The effects of material constants on the micropolar elastic honeycomb structure with negative Poisson’s ratio using the finite element method. Eng Comput 19:742–763

    Article  Google Scholar 

  • Huang G, Li F, Zhao X, Yufei Ma Y et al (2017) Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev 117(20):12764–12850

    Article  CAS  Google Scholar 

  • Huss JC, Fratzl P, Dunlop JWC, Merritt DJ et al (2019) Protecting offspring against fire: lessons from banksia seed pods. Front Plant Sci 10:283

    Article  Google Scholar 

  • Jammalamadaka U, Tappa K (2018) Recent advances in biomaterials for 3D printing and tissue engineering. J Funct Biomater 9(1):22

    Article  CAS  Google Scholar 

  • Khan F, Tanaka M (2018) Designing smart biomaterials for tissue engineering. Int J Mol Sci 19(1):17

    Article  CAS  Google Scholar 

  • Ling S, Qin Z, Li C, Huang W, Kaplan DL, Buehler MJ (2017) Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat Commun 8:1387

    Article  CAS  Google Scholar 

  • Losic D, Mitchell JG, Voelcker NH (2009) Diatomaceous lessons in nanotechnology and advanced materials. Adv Mater 21:2947–2958

    Article  CAS  Google Scholar 

  • Masters IG, Evans KE (1996) Models for the elastic deformation of honeycombs. Compos Struct 35:403–422

    Article  Google Scholar 

  • Mayer G (2005) Rigid biological systems as models for synthetic composites. Science 310:1144–1147

    Article  CAS  Google Scholar 

  • Mayer G, Sarikaya M (2002) Rigid biological composite materials: structural examples for biomimetic design. Exp Mech 42:395–403

    Article  CAS  Google Scholar 

  • Nguyen PQ, Courchesne NMD, Duraj-Thatte A, Praveschotinunt P, Joshi NS (2018) Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv Mater 30(19):e1704847

    Article  CAS  Google Scholar 

  • Nosonovsky M, Bhushan B (2008) Multiscale dissipative mechanisms and hierarchical surfaces: friction, superhydrophobicity, and biomimetics. Springer, Germany

    Book  Google Scholar 

  • Pan Z, Cheng F, Boxin Zhao B (2017) Bio-inspired polymeric structures with special wettability and their applications: an overview. Polymers (Basel) 9(12):725

    Article  CAS  Google Scholar 

  • Peeters M, Patricia Linton P, Araida Hidalgo-Bastida A (2019) Bioinspired materials 2018: conference report. Biomimetics (Basel) 4(1):4

    Article  Google Scholar 

  • Perera AS, Coppens MO (2019) Re-designing materials for biomedical applications: from biomimicry to nature-inspired chemical engineering. Philos Trans A Math Phys Eng Sci 377(2138):20180268

    Article  CAS  Google Scholar 

  • Poladian L, Wickham S, Lee K et al (2009) From photonic crystals and its suppression in butterfly scales. J R Soc Interface 6:S233–S242

    Article  Google Scholar 

  • Poppinga S, Nestle N, Å andor A et al (2017) Hygroscopic motions of fossil conifer cones. Sci Rep 7(1):40302

    Article  CAS  Google Scholar 

  • Przekora A (2019) Current trends in fabrication of biomaterials for bone and cartilage regeneration: materials modifications and biophysical stimulations. Int J Mol Sci 20(2):435

    Article  CAS  Google Scholar 

  • Quintana Alonso I, Fleck (2009) The damage tolerance of a sandwich panel containing a cracked honeycomb core. Appl Mech 76:061003-1–061003-8

    Google Scholar 

  • Schaffner M, Faber JA, Pianegonda L, Patrick A, Rühs P et al (2018) 3D printing of robotic soft actuators with programmable bioinspired architectures. Nat Commun 9:878

    Article  CAS  Google Scholar 

  • Sen D, Buehler MJ (2011) Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Sci Rep 1:35

    Article  CAS  Google Scholar 

  • Si Y, Dong Z, Lei Jiang L (2018) Bioinspired designs of superhydrophobic and superhydrophilic materials. ACS Cent Sci 4(9):1102–1112

    Article  CAS  Google Scholar 

  • Speck O, Speck T (2019) An overview of bioinspired and biomimetic self-repairing materials. Biomimetics (Basel) 4(1):26

    Article  Google Scholar 

  • Sterrenburg FAS, Tiffanz MA, del Castillo MEM (2005) Valve morphogenesis in the diatom genus Pleurosigma W. Smith (Bacillariophyceae): nature’s alternative sandwich. J Nanosci Nanotechnol 5:140–145

    Article  CAS  Google Scholar 

  • Terracciano M, De Stefano L, Ilaria Rea I (2018) Diatoms green nanotechnology for biosilica-based drug delivery systems. Pharmaceutics 10(4):242

    Article  Google Scholar 

  • Vrieling EG, Sun Q, Tian M et al (2007) Salinity-dependent diatom biosilicification implies an important role of external ionic strength. Proc Natl Acad Sci U S A 104:10441–10446

    Article  CAS  Google Scholar 

  • Warren WE, Kraynik AM (1987) The linear elastic response of twodimensional spatially periodic cellular materials. Mech Mater 6:27–37

    Article  Google Scholar 

  • Wat A, Lee JI, Ryu CW, Gludovatz B et al (2019) Bioinspired nacre-like alumina with a bulk-metallic glass-forming alloy as a compliant phase. Nat Commun 10:961

    Article  CAS  Google Scholar 

  • Wei L, McDonald AG (2016) A review on grafting of biofibers for biocomposites. Materials (Basel) 9(4):303

    Article  CAS  Google Scholar 

  • Wood J (2019) Bioinspiration in fashion – a review. Biomimetics (Basel) 4(1):16

    Article  Google Scholar 

  • Yamanaka S, Yano R, Usami H et al (2008) Optical properties of diatom silica frustule with special reference to blue light. J Appl Phys 103:074701

    Article  CAS  Google Scholar 

  • Yang MY, Huang JS, Hu JW (2008) Elastic buckling of hexagonal honeycombs with dual imperfections. Compos Struct 82:326–335

    Article  Google Scholar 

  • Yang K, Zhou C, Fan H, Yujiang Fan Y et al (2018) Bio-functional design, application and trends in metallic biomaterials. Int J Mol Sci 19(1):24

    Article  CAS  Google Scholar 

  • Yang X, Zhou T, Zwang TJ et al (2019) Bioinspired neuron-like electronics. Nat Mater 18:510–517

    Article  CAS  Google Scholar 

  • Yaraghi NA, Kisailus D (2018) Biomimetic structural materials: inspiration from design and assembly. Annu Rev Phys Chem 69(1):23–57

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang YW, Gao H (2011) On optimal hierarchy of load-bearing biological materials. Proc Biol Sci 278(1705):519–525

    Article  Google Scholar 

  • Zhang Q, Yang X, Li P (2015) Bioinspired engineering of honeycomb structure – using nature to inspire human innovation. Prog Mater Sci 74:332–400

    Article  Google Scholar 

  • Zhou J, Li J, Du X, Xu B (2017) Supramolecular biofunctional materials. Biomaterials 129:1–27

    Article  CAS  Google Scholar 

  • Zlotnikov I, Zolotoyabko E, Fratzl P (2017) Nano-scale modulus mapping of biological composite materials: theory and practice. Prog Mater Sci 87:292–320

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ehrlich, H. (2019). Hierarchical Biological Materials. In: Marine Biological Materials of Invertebrate Origin. Biologically-Inspired Systems, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-92483-0_5

Download citation

Publish with us

Policies and ethics