Skip to main content

A Framework for (De)composing with Boolean Automata Networks

  • Conference paper
  • First Online:
Machines, Computations, and Universality (MCU 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10881))

Included in the following conference series:

Abstract

Boolean automata networks (BANs) are a generalisation of Boolean cellular automata. In such, any theorem describing the way BANs compute information is a strong tool that can be applied to a wide range of models of computation. In this paper we explore a way of working with BANs which involves adding external inputs to the base model (via modules), and more importantly, a way to link networks together using the above mentioned inputs (via wirings). Our aim is to develop a powerful formalism for BAN (de)composition. We formulate two results: the first one shows that our modules/wirings definition is complete; the second one uses modules/wirings to prove simulation results amongst BANs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcolei, A., Perrot, K., Sené, S.: On the flora of asynchronous locally non-monotonic Boolean automata networks. In: Proceedings of SASB 2015, ENTCS, vol. 326, pp. 3–25 (2016)

    Article  Google Scholar 

  2. Alon, U.: Biological networks: the tinkerer as an engineer. Science 301, 1866–1867 (2003)

    Article  Google Scholar 

  3. Aracena, J., Gómez, L., Salinas, L.: Limit cycles and update digraphs in Boolean networks. Discrete Appl. Math. 161, 1–12 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bernot, G., Tahi, F.: Behaviour preservation of a biological regulatory network when embedded into a larger network. Fund. Inform. 91, 463–485 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15, 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Bornholdt, S., Davidich, M.I.: Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 3, e1672 (2008)

    Article  Google Scholar 

  7. Delaplace, F., Klaudel, H., Melliti, T., Sené, S.: Analysis of modular organisation of interaction networks based on asymptotic dynamics. In: Gilbert, D., Heiner, M. (eds.) CMSB 2012. LNCS, pp. 148–165. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33636-2_10

    Chapter  Google Scholar 

  8. Demongeot, J., Goles, E., Morvan, M., Noual, M., Sené, S.: Attraction basins as gauges of robustness against boundary conditions in biological complex systems. PLoS One 5, e11793 (2010)

    Article  Google Scholar 

  9. Feder, T.: Stable networks and product graphs. Ph.D thesis, Stanford University (1990)

    Google Scholar 

  10. Fogelman, F., Goles, E., Weisbuch, G.: Transient length in sequential iteration of threshold functions. Discrete Appl. Math. 6, 95–98 (1983)

    Article  MathSciNet  Google Scholar 

  11. Goles, E., Salinas, L.: Comparison between parallel and serial dynamics of Boolean networks. Theor. Comput. Sci. 396, 247–253 (2008)

    Article  MathSciNet  Google Scholar 

  12. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  13. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  14. Noual, M.: Updating Automata Networks. Ph.D thesis, École Normale Supérieure de Lyon (2012)

    Google Scholar 

  15. Robert, F.: Discrete Iterations: A Metric Study. Springer, Heidelberg (1986). https://doi.org/10.1007/978-3-642-61607-5

    Book  Google Scholar 

  16. Siebert, H.: Dynamical and structural modularity of discrete regulatory networks. In: Proceedings of COMPMOD 2009, EPTCS, vol. 6, pp. 109–124 (2009)

    Article  Google Scholar 

  17. Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42, 563–585 (1973)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported “Investissement d’avenir” program ANR-16-CONV-00001 and PACA Project Fri 2015_01134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pacôme Perrotin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perrot, K., Perrotin, P., Sené, S. (2018). A Framework for (De)composing with Boolean Automata Networks. In: Durand-Lose, J., Verlan, S. (eds) Machines, Computations, and Universality. MCU 2018. Lecture Notes in Computer Science(), vol 10881. Springer, Cham. https://doi.org/10.1007/978-3-319-92402-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92402-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92401-4

  • Online ISBN: 978-3-319-92402-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics