Skip to main content

Regulatory Dysfunction inhibits the Development and Application of Transgenic Livestock for Use in Agriculture

  • Chapter
  • First Online:
Animal Biotechnology 2

Abstract

Since the production of the first transgenic livestock, the technology for producing the animals and controlling transgene expression has matured. Initially, the lack of knowledge about promoter, enhancer, and coding regions of genes of interest greatly hampered efforts to create transgenes that would express appropriately in livestock and be useful to industry. There have been many developments in the technology to create transgenic animals, including somatic cell nuclear transfer-based cloning and gene editing. In the 31 years since the first report of transgenic livestock, a number of potentially useful animals, including cattle, goats, pigs, and sheep, have been made. However, there still are no genetically engineered animal-based food products on the market. There has been a failure of the regulatory processes to effectively move forward across the world, with many countries adopting process-based regulations, rather than product-based, and some countries having no regulatory framework at all. Additionally, there is a perception among some consumers that transgenic technology is potentially harmful in spite of a large, and growing, body of evidence to the contrary. Estimates suggest the world will need to approximately double our current food production by 2050, including animal-based foods; that is, we will have to produce an amount of food each year equal to that consumed by mankind over the past 500 years. The practical benefits of transgenic animals in agriculture have not yet reached consumers, and in the absence of predictable, science-based regulatory programs, it is unlikely that the benefits will be realized in the short to medium term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archibald AL, McClenaghan M, Hornsey V, Simons JP, Clark AJ (1990) High-level expression of biologically active human alpha 1-antitrypsin in the milk of transgenic mice. Proc Natl Acad Sci U S A 87:5178–5182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bawden CS, Powell BC, Walker SK, Rogers GE (1998) Expression of a wool intermediate filament keratin transgene in sheep fibre alters structure. Transgenic Res 7:273–287

    Article  PubMed  CAS  Google Scholar 

  • van Berkel PH, Welling MM, Geerts M, van Veen HA, Ravensbergen B, Salaheddine M, Pauwels EK, Pieper F, Nuijens JH, Nibbering PH (2002) Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat Biotechnol 20:484–487

    Article  PubMed  CAS  Google Scholar 

  • Bleck GT, White BR, Miller DJ, Wheeler MB (1998) Production of bovine α-lactalbumin in the milk of transgenic pigs. J Anim Sci 76:3072–3078

    Article  PubMed  CAS  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  PubMed  CAS  Google Scholar 

  • Bowen RA, Reed ML, Schnieke A, Seidel GE Jr, Stacey A, Thomas WK, Kajikawa O (1994) Transgenic cattle resulting from biopsied embryos: expression of c-ski in a transgenic calf. Biol Reprod 50:664–668

    Article  PubMed  CAS  Google Scholar 

  • Brem G, Brenig B, Goodman HM, Selden RC, Graf F, Kruff B et al (1985) Production of transgenic mice, rabbits and pigs by microinjection into pronuclei. Zuchthygiene 20:251–252

    Article  Google Scholar 

  • Brophy B, Smolenski G, Wheeler T, Wells D, L’Huillier P, Laible G (2003) Cloned transgenic cattle produce milk with higher levels of beta-casein and kappacasein. Nat Biotechnol 21:157–162

    Article  PubMed  CAS  Google Scholar 

  • Brundige DR, Maga EA, Klasing KC, Murray JD (2008) Lysozyme transgenic goats’ milk influences gastrointestinal morphology in young pigs. J Nutr 138:921–926

    Article  PubMed  CAS  Google Scholar 

  • Brundige DR, Maga EA, Klasing KC, Murray JD (2010) Consumption of pasteurized human lysozyme transgenic goats’ milk alters serum metabolite profile in young pigs. Transgenic Res 19:563–574

    Article  PubMed  CAS  Google Scholar 

  • Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–68

    Article  PubMed  CAS  Google Scholar 

  • Carneiro IS, Menezes JNR, Maia JA, Miranda AM, Oliveira VBS, Murray JD, Maga EA, Bertolini M, Bertolini LR (2018) Milk from transgenic goat expressing human lysozyme for recovery and treatment of gastrointestinal pathogens. Eur J Pharm Sci 112:79–86

    Article  PubMed  CAS  Google Scholar 

  • Carvalho EB, Maga EA, Quetz JS, Lima IFN, Magalhaes HYF, Rodrigues FAR, Silva AVA, Prata MMG, Cavalcante PA, Havt A, Bertolini M, Bertolini LR, Lima AAM (2012) Goat milk with and without increased concentrations of lysozyme improves repair of intestinal cell damage induced by enteroaggregative Escherichia coli. BMC Gastroenterol 12:106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de León FA, Robl JM (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Clark M, Murray JD, Maga EA (2014) Assessing unintended effects of a mammary-specific transgene at the whole animal level in host and non-target animals. Transgenic Res 23:245–256

    Article  PubMed  CAS  Google Scholar 

  • Clements JE, Wall RJ, Narayan O, Hauer D, Schoborg R, Sheffer D et al (1994) Development of transgenic sheep that express the visna virus envelope gene. Virology 200:370–380

    Article  PubMed  CAS  Google Scholar 

  • Cooper CA, Brundige DR, Reh WA, Maga EA, Murray JD (2011) Lysozyme transgenic goats’ milk positively impacts intestinal cytokine expression and morphology. Transgenic Res 20:1235–1243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooper CA, Nelson KM, Maga EA, Murray JD (2012) Consumption of transgenic cows’ milk containing human lactoferrin results in beneficial changes in the gastrointestinal tract and systemic health of young pigs. Transgenic Res 22:571–578

    Article  PubMed  CAS  Google Scholar 

  • Cooper CA, Garas Klobas L, Maga EA, Murray JD (2013) Consuming transgenic goats’ milk containing the antimicrobial protein lysozyme helps resolve diarrhea in young pigs. PLoS One 8:e58409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooper CA, Maga EA, Murray JD (2014a) Consumption of transgenic milk containing the antimicrobials lactoferrin and lysozyme separately and in conjunction by 6 week old pigs improves intestinal and systemic health. J Dairy Res 81:30–37

    Article  PubMed  CAS  Google Scholar 

  • Cooper CA, Nonnecke E, Lonnerdal B, Murray JD (2014b) The lactoferrin receptor may mediate the reduction of eosinophils in the duodenum of pigs consuming milk containing recombinant human lactoferrin. Biometals 27:1031–1038. https://doi.org/10.1007/s10534-014-9778-8

    Article  PubMed  CAS  Google Scholar 

  • Cooper CA, Maga EA, Murray JD (2015) Production of human lactoferrin and lysozyme in the milk of transgenic dairy animals: past, present and future. Transgenic Res 24:605–614. https://doi.org/10.1007/s11248-015-9885-5

    Article  PubMed  CAS  Google Scholar 

  • Dai Y, Vaught TD, Boone J, Chen S-H Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE, Cowell-Lucero JL, Wells KD, Colman A, Polejaeva IA, Ayares DL (2002) Targeted disruption of the α1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20:251–255

    Article  PubMed  CAS  Google Scholar 

  • Damak S, Jay NP, Barrell GK, Bullock DW (1996a) Targeting gene expression to the wool follicle in transgenic sheep. Biotechnology 14:181–184

    PubMed  CAS  Google Scholar 

  • Damak S, Su H, Jay NP, Bullock DW (1996b) Improved wool production in transgenic sheep expressing insulin-like growth factor 1. Biotechnology 14:185–188

    PubMed  CAS  Google Scholar 

  • Denning C, Burl S, Ainslie A, Bracken J, Dinnyes A, Fletcher J, King T, Ritchie M, Ritchie WA, Rollo M, de Sousa P, Travers A, Wilmut I, Clark AJ (2001) Deletion of the |[alpha]|(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nat Biotechnol 19:559–562

    Article  PubMed  CAS  Google Scholar 

  • Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483

    Article  PubMed  CAS  Google Scholar 

  • Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33:5978–5990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebert KM, Low MJ, Overstrom EW, Buonomo FC, Baile CA, Roberts TM et al (1988) A Moloney MLV-rat somatotropin fusion gene produces biologically active somatotropin in a transgenic pig. Mol Endocrinol 2:277–283

    Article  PubMed  CAS  Google Scholar 

  • Ebert KM, Smith TE, Buonoma FC, Overstrom EW, Low EJ (1990) Porcine growth hormone gene expression from viral promoters in transgenic swine. Anim Biotechnol 1:145–159

    Article  CAS  Google Scholar 

  • Ebert KM, DiTullio P, Barry CA, Schindler JE, Ayres SL, Smith TE, Pellerin LJ, Meade HM, Denman J, Roberts B (1994) Induction of human tissue plasminogen activator in the mammary gland of transgenic goats. Bio/Technology 12:699–702

    CAS  Google Scholar 

  • Fahrenkrug SC, Blake A, Carlson DF, Doran T, Van Eenennaam A, Faber D, Galli C, Hackett PB, Li N, Maga EA, Murray JD, Stotish R, Sullivan E, Taylor JF, Walton M, Wheeler M, Whitelaw B, Glenn BP (2010) Precision genetics for complex objectives in animal agriculture. J Anim Sci 88:2530–2539

    Article  PubMed  CAS  Google Scholar 

  • FDA (2009) Guidance 187: regulation of genetically engineered animals containing heritable recombinant DNA constructs. www.fda.gov/RegulatoryInformation/Guidances/default.htm

  • Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, Rottmann O, Vincent A, Zhang L, Jenkins S, Niersbach H, Kind AJ, Gregory PD, Schnieke AE, Platzer J (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One 6:e21045. https://doi.org/10.1371/journal.pone.0021045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forsberg CW (2001) Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 19:741–745

    Article  PubMed  CAS  Google Scholar 

  • Forsberg CW, Phillips JP, Golovan SP, Fan MZ, Meidinger RG, Ajakaiye A, Hilborn D, Hacker RR (2003) The Enviropig physiology, performance, and contribution to nutrient management advances in a regulated environment: the leading edge of change in the pork industry12. J Anim Sci 81:E68–E77. https://doi.org/10.2527/2003.8114_suppl_2E68x

    Article  Google Scholar 

  • Forsberg CW, Meidinger RG, Liu M, Cottrill M, Golovan S, Phillips JP (2013) Integration, stability and expression of the E. coli phytase transgene in the Cassie line of Yorkshire Enviropig™. Transgenic Res 22:379–389

    Article  PubMed  CAS  Google Scholar 

  • Forsberg CW, Meidinger RG, Ajakaiye A, Murray D, Fan MZ, Mandell IB, Phillips JP (2014a) Comparative carcass and tissue nutrient composition of transgenic Yorkshire pigs expressing phytase in the saliva and conventional Yorkshire pigs. J Anim Sci 92:4417–4439

    Article  PubMed  CAS  Google Scholar 

  • Forsberg CW, Meidinger RG, Murray D, Keirstead ND, Hayes MA, Fan MZ, Ganeshapillai J, Monteiro MA, Golovan SP, Phillips JP (2014b) Phytase properties and locations in tissues of transgenic pigs secreting phytase in the saliva. J Anim Sci 92:3375–3387

    Article  PubMed  CAS  Google Scholar 

  • Garas L, Murray JD, Maga EA (2015) Genetically engineered livestock: ethical use for food and medical models. Annu Rev Anim Biosci 3:1.1–1.17. https://doi.org/10.1146/annurev-animal-022114-110739

    Article  Google Scholar 

  • Garas LC, Feltrin C, Hamilton MK, Hagey JV, Murray JD, Bertolini LR, Bertolini M, Raybould HE, Maga EA (2016) Milk with and without lactoferrin can influence intestinal damage in a pig model of malnutrition. Food Funct 7:665–678

    Article  PubMed  CAS  Google Scholar 

  • Garas LC, Cooper CA, Dawson MW, Wang J-L, Murray JD, Maga EA (2017) Young pigs consuming lysozyme transgenic goat milk are protected from clinical symptoms of enterotoxigenic E. coli infection. J. Nutrition 147:2050–2059. https://doi.org/10.3945/jn.117.251322

    Article  CAS  Google Scholar 

  • Golovan SP, Meidinger RG, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney DJ, Plante C, Pollard JW, Fan MZ, Anthony Hayes M, Laursen J, Peter Hjorth J, Hacker RR, Phillips JP, Forsberg CW (2001) Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 19:741–745

    Google Scholar 

  • Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A 77:7380–7384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo T, Liu XF, Ding XB, Yang FF, Nie YW, An YJ, Guo H (2011) Fat-1 transgenic cattle as a model to study the function of ω-3 fatty acids. Lipids Health Dis 10:244–253. https://doi.org/10.1186/1476-511X-10-244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683

    Article  PubMed  CAS  Google Scholar 

  • Hartke JL, Monaco MH, Wheeler MB, Donovan SM (2005) Effect of a short-term fast on intestinal disaccharidase activity and villus morphology of piglets suckling insulin-like growth factor-I transgenic sows1. J An Sci 83:2404–2413. https://doi.org/10.2527/2005.83102404x

    Article  CAS  Google Scholar 

  • Haskell RE, Bowen RA (1995) Efficient production of transgenic cattle by retroviral infection of early embryos. Mol Reprod Dev 40:386–390

    Article  PubMed  CAS  Google Scholar 

  • Hu S, Ni W, Sai W, Zi H, Qiao J, Wang P, Sheng J, Chen C (2013) Knockdown of myostatin expression by RNAi enhances muscle growth in transgenic sheep. PLoS One 8(3):e58521. https://doi.org/10.1371/journal.pone.0058521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ivics Z, Hackett PB, Plasterk RH, Izsvák Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    Article  PubMed  CAS  Google Scholar 

  • Jabed A, Wagner S, McCracken J, Wells DN, Laible G (2012) Targeted microRNA expression in dairy cattle directs production of β-lactoglobulin-free, high-casein milk. Proc Natl Acad Sci U S A 109:16811–16816

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson KA, Berg JM, Murray JD, Maga EA (2010) Evaluating the fitness of human lysozyme transgenic dairy goats: growth and reproductive traits. Transgenic Res 19:977–986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krimpenfort P, Rademakers A, Eyestone W, van der Schans A, van den Broek S, Kooiman P et al (1991) Generation of transgenic dairy cattle using ‘in vitro’ embryo production. Bio/Technology 9:844–847

    CAS  Google Scholar 

  • Kues WA, Niemann H (2011) Advances in farm animal transgenesis. Prev Vet Med 102:146–156

    Article  PubMed  Google Scholar 

  • Lai L, Kang JX, Li R, Wang J, Witt WT, Yong HY, Hao Y, Wax DM, Murphy CN, Rieke A, Samuel M, Linville ML, Korte SW, Evans RW, Starzl TE, Prather RS, Dai Y (2006) Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24:435–436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lavitrano M, Forni M, Varzi V, Pucci L, Bacci ML, Di Stefano C, Fioretti D, Zoraqi G, Moioli B, Rossi M, Lazzereschi D, Stoppacciaro A, Seren E, Alfani D, Cortesini R, Frati L (1997) Sperm-mediated gene transfer: production of pigs transgenic for a human regulator of complement activation. Transplant Proc 29:3508–3509

    Article  PubMed  CAS  Google Scholar 

  • Lee CS, Lee DS, Fang NZ, Oh KB, Shin ST, Lee KK (2006) Integration and expression of goat b-casein/hGH hybrid gene in a transgenic goat. Reprod Dev Biol 30:293–299

    Google Scholar 

  • Li L, Li Q, Bao Y, Li J, Chen Z, Yu X, Zhao Y, Tian Y, Li N (2014) RNAi-based inhibition of porcine reproductive and respiratory syndrome virus replication in transgenic pigs. J Biotechnol 171:17–24

    Article  PubMed  CAS  Google Scholar 

  • Laible G (2009) Enhancing livestock through genetic engineering – recent advances and future prospects. Comp Immunol Microbiol Infect Dis 32:123–137

    Google Scholar 

  • Liu X, Pang D, Yuan T, Li Z, Li Z, Zhang M, Ren W, Ouyang H, Tang X (2016) N-3 polyunsaturated fatty acids attenuates triglyceride and inflammatory factors level in hfat-1 transgenic pigs. Lipids Health Dis 15:89–96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu KH, Gordon I, Gallagher M, McGovern H (1987) Pregnancy established in cattle by transfer of embryos derived from in vitro fertilisation of oocytes matured in vitro. Vet Rec 121:259–260

    Article  PubMed  CAS  Google Scholar 

  • Maga EA, Murray JD (1995) Mammary gland expression of transgenes and the potential for altering the properties of milk. Bio/Technology 13:1452–1457

    CAS  Google Scholar 

  • Maga EA, Murray JD (2010) Welfare applications of genetically engineered animals for use in agriculture. J An Sci 88:1588–1591

    Article  CAS  Google Scholar 

  • Maga EA, Sargent RG, Zeng H, Pati S, Zarling DA, Oppenheim SM, Collette NMB, Moyer AL, Conrad-Brink JS, Rowe JD, RH BD, Anderson GB, Murray JD (2003) Increased efficiency of transgenic livestock production. Transgenic Res 12:485–496

    Article  PubMed  CAS  Google Scholar 

  • Maga EA, Shoemaker CF, Rowe JD, BonDurant RH, Anderson GB, Murray JD (2006a) Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland. J Dairy Sci 89:518–524

    Article  PubMed  CAS  Google Scholar 

  • Maga EA, Cullor JS, Smith W, Anderson GB, Murray JD (2006b) Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk. Foodborne Pathog Dis 3:384–392

    Article  PubMed  CAS  Google Scholar 

  • Maga EA, Walker RL, Anderson GB, Murray JD (2006c) Consumption of milk from transgenic goats expressing human lysozyme in the mammary gland results in the modulation of intestinal microflora. Transgenic Res 15:515–519

    Article  PubMed  CAS  Google Scholar 

  • Maga EA, Desai PT, Weimer BC, Dao N, Kültz D, Murray JD (2012) Consumption of lysozyme-rich milk can alter microbial fecal populations. Appl Environ Microbiol 78:6153–6160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marshall KM, Hurley WL, Shanks RD, Wheeler MB (2006) Effects of suckling intensity on milk yield and piglet growth from lactation-enhanced gilts. J An Sci 84:2346–2351. https://doi.org/10.2527/jas.2005-764

    Article  CAS  Google Scholar 

  • McInnis EA, Kalanetra KM, Mills DA, Maga EA (2015) Analysis of raw goat milk microbiota: impact of stage of lactation and lysozyme on microbial diversity. Food Microbiol 46:121–131

    Article  PubMed  CAS  Google Scholar 

  • McKnight RA, Shamay A, Sankaran L, Wall RJ, Hennighausen L (1992) Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. Proc Natl Acad Sci U S A 89:6943–6947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meidinger RG, Ajakaiye A, Fan MZ, Zhang J, Phillips JP, Forsberg CW (2013) Digestive utilization of phosphorus from plant-based diets in the Cassie line of transgenic Yorkshire pigs that secrete phytase in the saliva. J Anim Sci 91:1307–1320

    Article  PubMed  CAS  Google Scholar 

  • Miller KF, Bolt DJ, Pursel VG, Hammer RE, Pinkert CA, Palmiter RD et al (1989) Expression of human or bovine growth hormone gene with a mouse metallothionein-1 promoter in transgenic swine alters the secretion of porcine growth hormone and insulin-like growth factor-I. J Endocrinol 120:481–488

    Article  PubMed  CAS  Google Scholar 

  • Monaco MH, Gronlund DE, Bleck GT, Hurley WL, Wheeler MB, Donovan SM (2005) Mammary specific transgenic over-expression of insulin-like growth factor-I (IGF-I) increases pig milk IGF-I and IGF binding proteins, with no effect on milk composition or yield. Transgenic Res 14:761–773

    Article  PubMed  CAS  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  PubMed  CAS  Google Scholar 

  • Murray JD, Maga EA (1999) Changing the composition and properties of milk. In: Murray JD, Anderson GB, Oberbauer AM, McGloughlin MM (eds) Transgenic animals in agriculture. CAB International, Wallingham, pp 193–208

    Google Scholar 

  • Murray JD, Maga EA (2010) Is there a risk from not using GE animals? Transgenic Res 19:357–361

    Article  PubMed  CAS  Google Scholar 

  • Murray JD, Maga EA (2016a) Genetically engineered livestock for agriculture: a generation after the first transgenic animal research conference. Transgenic Res 25:321–327

    Article  PubMed  CAS  Google Scholar 

  • Murray JD, Maga EA (2016b) A new paradigm for regulating genetically engineered animals that are used as food. Proc Natl Acad Sci U S A 113:3410–3413. https://doi.org/10.1073/pnas.1602474113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murray JD, Nancarrow CD, Marshall JT, Hazelton IG, Ward KA (1989) Production of transgenic merino sheep by microinjection of ovine metallothioneinovine growth hormone fusion genes. Reprod Fertil Dev 1:147–155

    Article  PubMed  CAS  Google Scholar 

  • Naldini L, Bloemer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  PubMed  CAS  Google Scholar 

  • Nancarrow CD, Murray JD, Boland MP, Sutton R, Hazelton IG (1984) Effect of gonadotrophin releasing hormone in the production of single‑cell embryos for pronuclear injection of foreign genes. In: Lindsay DR, Pearce DT (eds) Reproduction in sheep. Aust Acad Sci, Canberra, ACT, pp 286–288

    Google Scholar 

  • Nancarrow CD, Marshall JTA, Clarkson JL, Murray JD, Millard RM, Shanahan CM, Wynn PC, Ward KA (1991) Expression and physiology of performance regulating genes in transgenic sheep. J Reprod Fertil Suppl 43:277–291

    PubMed  CAS  Google Scholar 

  • Noble MS, Rodriguez-Zas S, Cook JB, Bleck GT, Hurley WL, Wheeler MB (2002) Lactational performance of first-parity transgenic gilts expressing bovine alpha-lactalbumin in their milk. J Anim Sci 80:1090–1096. https://doi.org/10.2527/2002.8041090x

    Article  PubMed  CAS  Google Scholar 

  • Nottle MB, Nagashima H, Verma PJ, Du ZT, Grupen CG et al (1999) Production and analysis of transgenic pigs containing a metallothionein porcine growth hormon gene construct. In: Murray JD, Anderson GB, Oberbauer AM, McGloughlin MM (eds) Trans-genic animals in agriculture. CABI Publishing, New York, NY, pp 145–156

    Google Scholar 

  • Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300:611–615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parc AL, Karav S, Rouquié C, Maga EA, Bunyatratchata A, Barile D (2017) Characterization of recombinant human lactoferrin N-glycans expressed in the milk of transgenic cows. PLoS One 12(2):e0171477. https://doi.org/10.1371/journal.pone.0171477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinkert CA, Murray JD (1999) Transgenic farm animals. In: Murray JD, Anderson GB, Oberbauer AM, McGloughlin MM (eds) Transgenic animals in agriculture. CAB International, Wallingham, pp 1–18

    Google Scholar 

  • Pinkert CA, Pursel VG, Miller KF, Palmiter RD, Brinster RL (1987) Production of transgenic pigs harboring growth hormone (MTbGH) or growth hormone releasing factor (MThGRF) genes. J Anim Sci 65(Suppl. 1):260 (Abstr.)

    Google Scholar 

  • Polge EJC, Barton SC, Surani MAH, Miller JR, Wagner T, Rottman R et al (1989) Induced expression of a bovine growth hormone construct in transgenic pigs: biotechnology of growth regulation. Butterworths, London, pp 279–289

    Google Scholar 

  • Pursel VG, Rexroad CE Jr (1993) Status of research with transgenic farm animals. J Anim Sci 71(Suppl):10–19

    Article  PubMed  Google Scholar 

  • Pursel VG, Rexroad CE Jr, Bolt DJ, Miller KF, Wall RJ, Hammer RE et al (1987) Progress on gene transfer in farm animals. Vet Immunol Immunopathol 17:303–312

    Article  PubMed  CAS  Google Scholar 

  • Pursel VG, Pinkert CA, Miller KF, Bolt DJ, Campbell RG, Palmiter RD, Brinster RL, Hammer RE (1989) Genetic engineering of livestock. Science 244:1281–1288

    Article  PubMed  CAS  Google Scholar 

  • Pursel VG, Wall RJ, Solomon MB, Bolt DJ, Murray JD, Ward KA (1997) Transfer of an ovine metallothionein-ovine growth hormone fusion gene into swine. J Anim Sci 75:2208–2214

    Article  PubMed  CAS  Google Scholar 

  • Pursel V, Wall RJ, Mitchell AD, Elsasser TH, Solomon MB, Coleman ME et al (1999) Expression of insulin-like growth factor I in skeletal muscle of transgenic swine. In: Murray JD, Anderson GB, Oberbauer AM, McGloughlin MM (eds) Transgenic animals in agriculture. CAB International, Wallingford

    Google Scholar 

  • Pursel VG, Mitchell AD, Bee G, Elsasser TH, McMurtry JP, Wall RJ et al (2004) Growth and tissue accretion rates of swine expressing an insulin-like growth factor I transgene. Anim Biotechnol 15:33–45

    Article  PubMed  CAS  Google Scholar 

  • Reh WA, Maga EA, Collette NMB, Moyer A, Conrad-Brink JS, Taylor SJ, DePeters EJ, Oppenheim S, Rowe JD, BonDurant RH, Anderson GB, Murray JD (2004) Hot topic: using a Stearoyl-CoA Desaturase transgene to Alter milk fatty acid composition. J Dairy Sci 87:3510–3514

    Article  PubMed  CAS  Google Scholar 

  • Rexroad CE Jr, Hammer RE, Bolt DJ, Mayo KE, Frohman LA, Palmiter RD et al (1989) Production of transgenic sheep with growth-regulating genes. Mol Reprod Dev 1:164–169

    Article  PubMed  CAS  Google Scholar 

  • Rexroad CE Jr, Mayo K, Bolt DJ, Elsasser TH, Miller KF, Behringer RR et al (1991) Transferrin- and albumin-directed expression of growth-related peptides in transgenic sheep. J Anim Sci 69:2995–3004

    Article  PubMed  CAS  Google Scholar 

  • Richt JA, Kasinathan P, Hamir AN, Castilla J, Sathiyaseelan T, Vargas F, Sathiyaseelan J, Wu H, Matsushita H, Koster J, Kato S, Ishida I, Soto C, Robl JM, Kuroiwa Y (2007) Production of cattle lacking prion protein. Nat Biotechnol 25:132–138

    Article  PubMed  CAS  Google Scholar 

  • Rocheleau CE, Downs WD, Lin R, Wittmann C, Bei Y, Cha Y-H, Ali M, Priess JR, Mello CC (1997) Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90:707–716

    Article  PubMed  CAS  Google Scholar 

  • Rogers GE (1990) Improvement of wool production through genetic engineering. Trends Biotechnol 8:6

    Article  PubMed  CAS  Google Scholar 

  • Saeki K, Matsumoto K, Kinoshita M, Suzuki I, Tasaka Y, Kano K, Taguchi Y, Mikami K, Hirabayashi M, Kashiwazaki N, Hosoi Y, Murata N, Iritani A (2004) Functional expression of a Δ12 fatty acid desaturase gene from spinach in transgenic pigs. PNAS 101:6361–6366

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Scharfen EC, Mills DA, Maga EA (2007) Use of human lysozyme transgenic goat milk in cheese making: effects on lactic acid bacteria performance. J Dairy Sci 90:4084–4091

    Article  PubMed  CAS  Google Scholar 

  • Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KHS (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:2130–2133

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Berg JM (1995) A direct comparison of the properties of natural and designed zinc-finger proteins. Chem Biol 2:83–89

    Article  PubMed  CAS  Google Scholar 

  • Simojoki H, Hyvönen P, Orro T, Pyörälä S (2010) High concentration of human lactoferrin in milk of rhLf-transgenic cows relieves signs of bovine experimental Staphylococcus chromogenes intramammary infection. Vet Immunol Immunopathol 136:265–271

    Article  PubMed  CAS  Google Scholar 

  • Tan W, Carlson DF, Walton MW, Fahrenkrug SC, Hackett PB (2012) Precision editing of large animal genomes. Adv Genet 80:37–97

    PubMed  CAS  Google Scholar 

  • Tessanne K, Golding MC, Long CR, Peoples MD, Hannon G, Westhusin ME (2012) Production of transgenic calves expressing an shRNA targeting myostatin. Mol Reprod Dev 79:176–185

    Article  PubMed  CAS  Google Scholar 

  • Thomassen EA, van Veen HA, van Berkel PH, Nuijens JH, Abrahams JP (2005) The protein structure of recombinant human lactoferrin produced in the milk of transgenic cows closely matches the structure of human milk-derived lactoferrin. Transgenic Res 14:397–405

    Article  PubMed  CAS  Google Scholar 

  • Tong J, Wei H, Liu X, Hu W, Bi M, Wang YY, Li QY, Li N (2011) Production of recombinant human lysozyme in the milk of transgenic pigs. Transgenic Res 20:417–419

    Article  PubMed  CAS  Google Scholar 

  • Van Eenennaam AL, Young AE (2014) Prevalence and impacts of genetically engineered feedstuffs on livestock populations1. J Anim Sci 92:4255–4278. https://doi.org/10.2527/jas.2014-8124

    Article  PubMed  CAS  Google Scholar 

  • Vize PD, Michalska AE, Ashman R, Lloyd B, Stone BA, Quinn P et al (1988) Introduction of a porcine growth hormone fusion gene into transgenic pigs promotes growth. J Cell Sci 90:295–300

    PubMed  CAS  Google Scholar 

  • Wall RJ, Pursel VG, Hammer RE, Brinster RL (1985) Development of porcine ova that were centrifuged to permit visualization of pronuclei and nuclei. Biol Reprod 32:645–651

    Article  PubMed  CAS  Google Scholar 

  • Wall RJ, Hawk HW, Nel N (1992) Making transgenic livestock: genetic engineering on a large scale. J Cell Biochem 49:113–120

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Yang P, Tang B, Sun X, Zhang R, Guo C, Gong G, Liu Y, Li R, Zhang L, Dai Y, Li N (2008) Expression and characterization of bioactive recombinant human alpha-lactalbumin in the milk of transgenic cloned cows. J Dairy Sci 91:4466–4476

    Article  PubMed  CAS  Google Scholar 

  • Wang YS, He X, Du Y, Su J, Gao M, Ma Y, Hua S, Quan F, Liu J, Zhang Y (2015) Transgenic cattle produced by nuclear transfer of fetal fibroblasts carrying Ipr1 gene at a specific locus. Theriogenology 84:608–616

    Article  PubMed  CAS  Google Scholar 

  • Ward KA, Nancarrow CD (1991) The genetic engineering of production traits in domestic animals. Experientia 47:913

    Article  PubMed  CAS  Google Scholar 

  • Ward KA, Franklin IR, Murray JD, Nancarrow CD, Raphael KA, Rigby NW, Byrne CR, Wilson BW, Hunt CL (1986) The direct transfer of DNA by embryo microinjection. Proc. 3rd World Congress Genetics Applied to Livestock Breeding 12:6–21. Lincoln, Nebraska.

    Google Scholar 

  • Ward KA, Nancarrow CD, Murray JD, Shanahan CM, Byrne CR, Rigby NW, Townrow CA, Leish Z, Wilson BW, Graham NM, Wynn PC, Hunt CL, Speck PA (1990) The current status of genetic engineering in domestic animals. J Dairy Sci 73:2586–2592

    Article  CAS  Google Scholar 

  • Wheeler MB, Bleck GT, Donovan SM (2001) Transgenic alteration of sow milk to improve piglet growth and health. Reprod Suppl 58:313–324

    PubMed  CAS  Google Scholar 

  • Whyte JJ, Zhao J, Wells KD, Samuel MS, Whitworth KM, Walters EM, Laughlin MH, Prather RS (2011) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  PubMed  CAS  Google Scholar 

  • Wieghart M, Hoover JL, McGrane MM, Hanson RW, Rottman FM, Holtzman SH et al (1990) Production of transgenic pigs harbouring a rat phosphoenolpyruvate carboxykinase-bovine growth hormone fusion gene. J Reprod Fertil Suppl 41:89–96

    PubMed  CAS  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Ouyang H, Duan B et al (2012) Production of cloned transgenic cow expressing omega-3 fatty acids. Transgenic Res 21:537–543. https://doi.org/10.1007/s11248-011-9554-2

    Article  PubMed  CAS  Google Scholar 

  • Yang P, Wang J, Gong G, Sun X, Zhang R, Du Z, Liu Y, Li R, Ding F, Tang B, Dai Y, Li N (2008) Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin. PLoS One 3:e3453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang B, Wang J, Tang B, Liu Y, Guo C, Yang P, Yu T, Li R, Zhao J, Zhang L, Dai Y, Li N (2011) Characterization of bioactive recombinant human lysozyme expressed in milk of cloned transgenic cattle. PLoS One 6:e17593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Li L, Cai Y, Xu X, Chen J, Wu Y, Yu H, Yu G, Liu S, Zhang A, Chen J, Cheng G (2008) Expression of active recombinant human lactoferrin in the milk of transgenic goats. Protein Expr Purif 57:127–135

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Murray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murray, J.D., Maga, E.A. (2018). Regulatory Dysfunction inhibits the Development and Application of Transgenic Livestock for Use in Agriculture. In: Niemann, H., Wrenzycki, C. (eds) Animal Biotechnology 2. Springer, Cham. https://doi.org/10.1007/978-3-319-92348-2_8

Download citation

Publish with us

Policies and ethics