Skip to main content

Cloning of Livestock by Somatic Cell Nuclear Transfer

  • Chapter
  • First Online:

Abstract

Since the cloning of “Dolly” by somatic cell nuclear transfer in 1996, numerous articles have been published concerning the application of this technology to a large variety of mammalian species including all the major livestock species. While live births have been obtained for many species, the efficiency of cellular reprogramming essential for success has not been significantly improved. This chapter will attempt to address the inputs utilized for this procedure and the major manipulation steps with the objective of identifying the major factors which might affect this efficiency of reprogramming and some of the studies addressing these factors. Finally, the challenging task of setting optimum endpoints for experiments involving domestic species will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Deng CX, Finkel T (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A 105:14447–14452

    Article  PubMed  PubMed Central  Google Scholar 

  • Arias ME, Ross PJ, Felmer RN (2013) Culture medium composition affects the gene expression pattern and in vitro development potential of bovine somatic cell nuclear transfer (SCNT) embryos. Biol Res 46(4):452–462

    Article  PubMed  Google Scholar 

  • Bondioli KR, Westhusin ME, Looney CR (1990) Production of identical bovine offspring by nuclear transfer. Theriogenology 33:165–174

    Article  Google Scholar 

  • Bondioli K, Ramsoondar J, Williams B, Costa C, Fodor W (2001) Cloned pigs generated from cultured skin fibroblasts derived from a h-transferase transgenic boar. Mol Reprod Dev 60:189–195

    Article  CAS  PubMed  Google Scholar 

  • Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci U S A 38:455–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell KH, Ritchie WA, Wilmut I (1993) Nuclear-cytoplasmic interactions during the first cell cycle of nuclear transfer reconstructed bovine embryos: implications for deoxyribonucleic acid replication and development. Biol Reprod 49:933–942

    Article  CAS  PubMed  Google Scholar 

  • Campbell K, Loi P, Otaegui P, Wilmut I (1996a) Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev Reprod 1:40–46

    Article  CAS  PubMed  Google Scholar 

  • Campbell KHS, McWhir J, Ritchie WA, Wilmut I (1996b) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66

    Article  CAS  PubMed  Google Scholar 

  • Cervera RP, Martí-Gutiérrez N, Escorihuela E, Moreno R, Stojkovic M (2009) Trichostatin a affects histone acetylation and gene expression in porcine somatic cell nucleus transfer embryos. Theriogenology 72:1097–1110

    Article  CAS  PubMed  Google Scholar 

  • Cheng WM, Sun XL, An L, Zhu SE, Li XH, Li Y, Tian JH (2007) Effect of different parthenogenetic activation methods on the developmental competence of in vitro matured porcine oocytes. Anim Biotechnol 18(2):131–141

    Article  CAS  PubMed  Google Scholar 

  • Cho PS, Lo DP, Wikiel KJ, Rowland HC, Coburn RC, McMorrow IM, Goodrich JG, Arn JS, Billiter RA, Houser SL, Shimizu A, Yang YG, Sachs DH, Huang CA (2007) Establishment of transplantable porcine tumor cell lines derived from MHC inbred miniature swine. Blood 110:3996–4004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa-Borges N, Santalo J, Ibanez E (2010) Comparison between the effects of valproic acid and trichostatin a on the in vitro development, blastocyst quality, and full-term development of mouse somatic cell nuclear transfer embryos. Cell Reprogram 12:437–446

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Hao J, Hou XJ, Hai T, Fan Y, Yu Y, Jouneau A, Wang L, Zhou Q (2010) Somatic nucleus reprogramming is significantly improved by m-carboxycinnamic acid bishydroxamide, a histone deacetylase inhibitor. J Biol Chem 285:31002–31010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das ZC, Gupta MK, Uhm SJ, Lee HT (2010) Increasing histone acetylation of cloned embryos, but not donor cells, by sodium butyrate improves their in vitro development in pigs. Cell Reprogram 12:95–104

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Wang Y, Zhang D, Guo Z, Zhang Y (2008) Increased pre-implantation development of cloned bovine embryos treated with 5-aza-2′-deoxycytidine and trichostatin a. Theriogenology 70:622–630

    Article  CAS  PubMed  Google Scholar 

  • Edwards JL, Schrick FN (2015) Cloning by somatic cell nuclear transfer. In: Hopper RM (ed) Bovine reproduction. John Wiley & Sons, Inc, Hoboken, NJ, pp 771–783

    Google Scholar 

  • Enright BP, Kubota C, Yang X, Tian XC (2003) Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin a or 5-aza-2′-deoxycytidine. Biol Reprod 69:896–901

    Article  CAS  PubMed  Google Scholar 

  • Enright BP, Sung LY, Chang CC, Yang X, Tian XC (2005) Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2′-deoxycytidine. Biol Reprod 72:944–948

    Article  CAS  PubMed  Google Scholar 

  • Esteves TC, Psathaki OE, Pfeiffer MJ, Balbach ST, Zeuschner D, Shitara H, Yonekawa H, Siatkowski M, Fuellen G, Boiani M (2012) Mitochondrial physiology and gene expression analyses reveal metabolic and translational dysregulation in oocyte-induced somatic nuclear reprogramming. PLoS One 7:e36850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14:264–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraldo AM, Bondioli KR (2011) Inhibition of DNA methy lation in somatic cells epigenetics protocols. In: Tollefsbol TO (ed) Methods in molecular biology™ no. 791. Humana Press, New York, pp 145–156

    Google Scholar 

  • Giraldo AM, Lynn JW, Godke RA, Bondioli KR (2007a) Proliferative characteristics and chromosomal stability of bovine donor cells for nuclear transfer. Mol Reprod Dev 73:1230–1238

    Article  CAS  Google Scholar 

  • Giraldo AM, Lynn JW, Purpera MN, Godke RA, Bondioli KR (2007b) DNA methylation and histone acetylation patterns in cultured bovine fibroblasts for nuclear transfer. Mol Reprod Dev 74:1514–1524

    Article  CAS  PubMed  Google Scholar 

  • Giraldo, A.M., D.A. Hylan, C.B. Ballard, M.N. Purpera, T.D. Vaught, J.W. Lynn, , R.A. Godke, K.R. Bondioli. 2008. Effect of epigenetic modifications of donor somatic cells on the subsequent chromatin remodeling of cloned bovine embryos. Biol Reprod 78:832–840

    Article  CAS  PubMed  Google Scholar 

  • Giraldo AM, Lynn JW, Purpera MN, Vaught TD, Ayares DL, Godke RA, Bondioli KR (2009) Inhibition of DNA Methyltransferase 1 expression in bovine fibroblast cells used for nuclear transfer. Reprod Fertil Dev 21:785–795

    Article  CAS  PubMed  Google Scholar 

  • Giraldo AM, Ball S, Bondioli KR (2012) Production of transgenic and knockout pigs by somatic cell nuclear transfer. Methods Mol Biol 885:105–123

    Article  CAS  PubMed  Google Scholar 

  • Gray KR, Bondioli KR, Betts CL (1991) The commercial application of embryo splitting in beef cattle. Theriogenology 35:37–44

    Article  Google Scholar 

  • Hiendleder S, Zakhartchenko V, Wolf E (2005) Mitochondria and the success of somatic cell nuclear transfer cloning: from nuclear-mitochondrial interactions to mitochondrial complementation and mitochondrial DNA recombination. Reprod Fertil Dev 17:69–83

    Article  CAS  PubMed  Google Scholar 

  • Hou Y-P, Dai Y-P, Zhu S-E, Zhu H-B, Wu T-Y, Gong G-C, Wang H-P, Wang L-L, Liu Y, Li R, Wan R, Li N (2005) Bovine oocytes vitrified by the open pulled straw method and used for somatic cell cloning supported development to term. Theriogenology 64:1381–1391

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Ma F, Yang J, Riaz H, Wang Y, Wu W, Xia X, Ma Z, Zhou Y, Zhang L, Ying W, Xu D, Zuo B, Ren Z, Xiong Y (2014) Effects of histone deacetylase inhibitor oxamflatin on in vitro porcine somatic cell nuclear transfer embryos. Cell Reprogram 16:253–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Tang X, Xie W, Zhou Y, Li D, Yao C, Zhou Y, Zhu J, Lai L, Ouyang H, Pang D (2011) Histone deacetylase inhibitor significantly improved the cloning efficiency of porcine somatic cell nuclear transfer embryos. Cell Reprogram 13:513–520

    Article  CAS  PubMed  Google Scholar 

  • Johnson RT, Rao PN (1970) Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature 225:159–164

    Article  PubMed  Google Scholar 

  • Kallingappa PK, Turner PM, Eichenlaub MP, Green AL, Oback FC, Chibnall AM, Wells DN, Oback B (2016) Quiescence loosens epigenetic constraints in bovine somatic cells and improves their reprogramming into totipotency. Biol Reprod 95(16):11–10

    Google Scholar 

  • Kasinathan P, Knott JG, Wang Z, Jerry DJ, Robl JM (2001) Production of calves from G1 fibroblasts. Nat Biotechnol 19:1176–1178

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Tani T, Tsunoda Y (2000) Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. J Reprod Fertil 120:231–237

    Article  CAS  PubMed  Google Scholar 

  • Kishigami S, Mizutani E, Ohta H, Hikichi T, Thuan NV (2006) Significant improvement of mouse cloning technique by treatment with trichostatin a after somatic nuclear transfer. Biochem Biophys Res Commun 340(1):183–189

    Article  CAS  PubMed  Google Scholar 

  • Kues WA, Anger M, Carnwath JW, Paul D, Motlik J, Niemann H (2000) Cell cycle synchronization of porcine fetal fibroblasts: effects of serum deprivation and reversible cell cycle inhibitors. Biol Reprod 62:412–419

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa Y, Kasinathan P, Choi YJ, Naeem R, Tomizuka K, Sullivan EJ, Knott JG, Duteau A, Goldsby RA, Osborne BA, Ishida I, Robl JM (2002) Cloned transchromosomic calves producing human immunoglobulin. Nat Biotechnol 20:889–894

    Article  CAS  PubMed  Google Scholar 

  • Labrecque R, Sirard MA (2014) The study of mammalian oocyte competence by transcriptome analysis: progress and challenges. Mol Hum Reprod 20:103–116

    Article  CAS  PubMed  Google Scholar 

  • Li GP, Bunch TD, White KL, Aston KI, Meerdo LN, Pate BJ, Sessions BR (2004a) Development, chromosomal composition, and cell allocation of bovine cloned blastocyst derived from chemically assisted enucleation and cultured in conditioned media. Mol Reprod Dev 68:189–197

    Article  CAS  PubMed  Google Scholar 

  • Li GP, White KL, Bunch TD (2004b) Review of enucleation methods and procedures used in animal cloning: state of the art. Cloning Stem Cells 6:5–13

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Shi J, Liu D, Zhou R, Zeng H, Zhou X, Mai R, Zeng S, Luo L, Yu W, Zhang S, Wu Z (2013) Effects of donor fibroblast cell type and transferred cloned embryo number on the efficiency of pig cloning. Cell Reprogram 15:35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd RE, Lee JH, Alberio R, Bowles EJ, Ramalho-Santos J, Campbell KH, John JCS (2006) Aberrant nucleo-cytoplasmic cross-talk results in donor cell mtDNA persistence in cloned embryos. Genetics 172:2515–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao J, Zhao M-T, Whitworth KM, Spate LD, Walters EM, O'Gorman C, Lee K, Samuel MS, Murphy CN, Wells K, Rivera RM, Prather RS (2015) Oxamflatin treatment enhances cloned porcine embryo development and nuclear reprogramming. Cell Reprogram 17:28–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maside C, Gil MA, Cuello C, Sanchez-Osorio J, Parrilla I, Lucas X, Caamano JN, Vazquez JM, Roca J, Martinez EA (2011) Effects of Hoechst 33342 staining and ultraviolet irradiation on the developmental competence of in vitro-matured porcine oocytes. Theriogenology 76:1667–1675

    Article  CAS  PubMed  Google Scholar 

  • McGrath J, Solter D (1984) Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science 226:1317–1319

    Article  CAS  PubMed  Google Scholar 

  • Meirelles FV, Bordignon V, Watanabe Y, Watanabe M, Dayan A, Lobo RB, Garcia JM, Smith LC (2001) Complete replacement of the mitochondrial genotype in a Bos indicus calf reconstructed by nuclear transfer to a Bos taurus oocyte. Genetics 158(1):351–356

    PubMed  PubMed Central  CAS  Google Scholar 

  • Moawad AR, Choi I, Zhu J, Campbell KH (2011) Ovine oocytes vitrified at germinal vesicle stage as cytoplast recipients for somatic cell nuclear transfer (SCNT). Cell Reprogram 13:289–296

    Article  CAS  PubMed  Google Scholar 

  • Oback B (2008) Cloning from stem cells: different lineages, different species, same story. Reprod Fertil Dev 21:83–94

    Article  Google Scholar 

  • Oback B, Wells D (2002) Donor cells for nuclear cloning: many are called, but few are chosen. Cloning Stem Cells 4:147–168

    Article  CAS  PubMed  Google Scholar 

  • Ono T, Li C, Mizutani E, Terashita Y, Yamagata K, Wakayama T (2010) Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in mice. Biol Reprod 83:929–937

    Article  CAS  PubMed  Google Scholar 

  • Polejaeva IA, Rutigliano HM, Wells KD (2016) Livestock in biomedical research: history, current status and future prospective. Reprod Fertil Dev 28:112–124

    Article  PubMed  Google Scholar 

  • Prather RS, Barnes FL, Sims MM, Robl JM, Eyestone WH, First NL (1987) Nuclear transplantation in the bovine embryo: assessment of donor nuclei and recipient oocyte. Biol Reprod 37(4):859–866

    Article  CAS  PubMed  Google Scholar 

  • Presicce GA, Yang X (1994) Nuclear dynamics of parthenogenesis of bovine oocytes matured in vitro for 20 and 40 hours and activated with combined ethanol and cycloheximide treatment. Mol Reprod Dev 37:61–68

    Article  CAS  PubMed  Google Scholar 

  • Radzisheuskaya A, Le Bin Chia G, dos Santos RL, Theunissen TW, Castro LFC, Nichols J, Silva JCR (2013) A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nat Cell Biol 15:579–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reggio BC, James AN, Green HL, Gavin WG, Behboodi E, Echelard Y, Godke RA (2001) Cloned transgenic offspring resulting from somatic cell nuclear transfer in the goat: oocytes derived from both follicle-stimulating hormone-stimulated and nonstimulated abattoir-derived ovaries. Biol Reprod 65(5):1528–1533

    Article  CAS  PubMed  Google Scholar 

  • Rideout WM 3rd, Wakayama T, Wutz A, Eggan K, Jackson-Grusby L, Dausman J, Yanagimachi R, Jaenisch R (2000) Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nat Genet 24:109–110

    Article  CAS  PubMed  Google Scholar 

  • Ross PJ, Cibelli JB (2010) Bovine somatic cell nuclear transfer. Methods Mol Biol 636:155–177

    Article  PubMed  Google Scholar 

  • Ross PJ, Rodriguez RM, Iager AE, Beyhan Z, Wang K, Ragina NP, Yoon SY, Fissore RA, Cibelli JB (2009) Activation of bovine somatic cell nuclear transfer embryos by PLCZ cRNA injection. Reproduction 137(3):427–437

    Article  CAS  PubMed  Google Scholar 

  • Rybouchkin A, Kato Y, Tsunoda Y (2006) Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer. Biol Reprod 74:1083–1089

    Article  CAS  PubMed  Google Scholar 

  • Sarmiento JA (2014) The role of histone methyltransferases in determining developmental potential of bovine oocytes. Louisiana State University. PhD dissertation. http://etd.lsu.edu/docs/available/etd-11052014-192543/

  • Shi W, Hoeflich A, Flaswinkel H, Stojkovic M, Wolf E, Zakhartchenko V (2003) Induction of a senescent-like phenotype does not confer the ability of bovine immortal cells to support the development of nuclear transfer embryos. Biol Reprod 69:301–309

    Article  CAS  PubMed  Google Scholar 

  • Staszkiewicz J, Power RA, Harkins LL, Barnes CW, Strickler KL, Rim JS, Bondioli KR, Eilersten KJ (2013) Silencing histone deacetylase-specific isoforms enhances expression of pluripotency genes in bovine fibroblasts. Cell Reprogram 15:397–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Susko-Parrish JL, Liebfried-Rutledge ML, Northey DL, Schutzkus V, First NL (1994) Inhibition of protein kinases after an induced calcium transient causes transition of bovine oocytes to embryonic cycles without meiotic completion. Dev Biol 166:729–739

    Article  CAS  PubMed  Google Scholar 

  • Vajta G, Kragh PM, Mtango NR, Callesen H (2005) Hand-made cloning approach: potentials and limitations. Reprod Fertil Dev 17(1–2):97–112

    Article  CAS  PubMed  Google Scholar 

  • Wakayama T, Yanagimachi R (2001) Mouse cloning with nucleus donor cells of different age and type. Mol Reprod Dev 58:376–383

    Article  CAS  PubMed  Google Scholar 

  • Wang ZG, Wang W, Yu SD, Xu ZR (2008) Effects of different activation protocols on preimplantation development, apoptosis and ploidy of bovine parthenogenetic embryos. Anim Reprod Sci 105(3–4):292–301

    Article  PubMed  Google Scholar 

  • Wang Y, Su J, Wang L, Xu W, Quan F, Liu J, Zhang Y (2011) The effects of 5-aza-2′- deoxycytidine and trichostatin a on gene expression and DNA methylation status in cloned bovine blastocysts. Cell Reprogram 13:297–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wee G, Shim JJ, Koo DB, Chae JI, Lee KK, Han YM (2007) Epigenetic alteration of the donor cells does not recapitulate the reprogramming of DNA-methylation in cloned embryos. Reproduction 134:781–787

    Article  CAS  PubMed  Google Scholar 

  • Westhusin ME, Levanduski MJ, Scarborough R, Looney CR, Bondioli KR (1992) Viable embryos and normal calves after nuclear transfer into Hoechst stained enucleated demi-oocytes of cows. J Reprod Fertil 95(2):475–480

    Article  CAS  PubMed  Google Scholar 

  • Whitworth KM, Zhao J, Spate LD, Li R, Prather RS (2011) Scriptaid corrects gene expression of a few aberrantly reprogrammed transcripts in nuclear transfer pig blastocyst stage embryos. Cell Reprogram 13:191–204

    Article  CAS  PubMed  Google Scholar 

  • Willadsen SM (1986) Nuclear transplantation in sheep embryos. Nature 320:63–65

    Article  CAS  PubMed  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  CAS  Google Scholar 

  • Wilson VL, Jones PA (1983) DNA methylation decreases in aging but not in immortal cells. Science 220:1055–1057

    Article  CAS  PubMed  Google Scholar 

  • Yang XJ, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9:206–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Smith SL, Tian XC, Lewin HA, Renard JP, Wakayama T (2007) Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet 39:295–302

    Article  CAS  PubMed  Google Scholar 

  • Yang B-C, Im G-S, Kim D-H, Yang B-S, Oh H-J, Park H-S, Seong H-H, Kim S-W, Ka H-H, Lee C-K (2008) Development of vitrified–thawed bovine oocytes after in vitro fertilization and somatic cell nuclear transfer. Anim Reprod Sci 103:25–37

    Article  CAS  PubMed  Google Scholar 

  • Young LE, Sinclair KD, Wilmut I (1998) Large offspring syndrome in cattle and sheep. Rev Reprod 3:155–163

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Hao Y, Ross JW, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS (2010) Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos. Cell Reprogram 12:75–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth R. Bondioli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bondioli, K.R. (2018). Cloning of Livestock by Somatic Cell Nuclear Transfer. In: Niemann, H., Wrenzycki, C. (eds) Animal Biotechnology 2. Springer, Cham. https://doi.org/10.1007/978-3-319-92348-2_1

Download citation

Publish with us

Policies and ethics