Skip to main content

Fabrication and Characterization of Composites

  • Chapter
  • First Online:
Book cover Metal Matrix Composites

Abstract

This chapter describes the fabrication process and characterization of MMC in the following systems: Mg/TiC, MgAZ91/AlN, Mg/AlN, Al-Cux/TiC, Al-Mgx/TiC, Al(1010/2024/6061/7075)/TiC, MgAZ91/SiC, Ni/Al2O3, and MgAZ91/TiC. Currently, the most widely used materials as reinforcement are TiC, SiC, AlN, Al2O3, and graphite, which have been used in Al, Mg, Cu, Ni, and its alloys with the purpose of improving its mechanical properties such as the module of elasticity, hardness, corrosion, and wear resistance, among others. In this chapter, the research work performed by the authors includes TiC, AlN, SiC, and Al2O3 used like reinforcement. The composites fabricated have a high content of reinforcement, and most of them were fabricated by infiltration. Some results of the processing, sintering preforms, kinetic infiltration, and characterization of these composite systems obtained by the authors were addressed. This chapter contains the main results about characterization of different composite systems in which the group had worked for more than 25 years. Characterization of the composites includes microstructural, mechanical, thermal, and electrical mainly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dey A, Pandey KM (2015) Magnesium metal matrix composites – a review. Rev Adv Mater Sci 42:58–67

    CAS  Google Scholar 

  2. Luo A (1995) Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites. Metall Mater Trans A 26:2445–2455

    Article  Google Scholar 

  3. Lopez VH, Truelove S, Kennedy AR (2003) Fabrication of Al–TiC master composites and their dispersion in Al, Cu and Mg melts. Mater Sci Technol 19:925–930

    Article  CAS  Google Scholar 

  4. Sun XF, Wang CJ, Deng KK, Kang JW, Bai Y, Nie K, Shang SJ (2017) Aging behavior of AZ91 matrix influenced by 5 μm SiCp: investigation on the microstructure and mechanical properties. J Alloys Compd 727:1263–1272

    Article  CAS  Google Scholar 

  5. Wang XJ, Xu L, Hu XS, Nie KB, Deng KK, Wu K, Zheng M (2011) Influences of extrusion parameters on microstructure and mechanical properties of particulate reinforced magnesium matrix composites. Mater Sci Eng A Struct Mater 528:6387–6392

    Article  CAS  Google Scholar 

  6. Shen MJ, Ying T, Chen FY, Hou JM (2017) Microstructural analysis and mechanical properties of the AZ31B matrix cast composites containing micron SiC particles. Int J Met Cast 11(2):287–293

    CAS  Google Scholar 

  7. Chen L, Yao Y (2014) Processing, microstructures, and mechanical properties of magnesium matrix composites: a review. Acta Metall Sin 27:762–774

    Article  CAS  Google Scholar 

  8. Contreras A, Lopez VH, Bedolla E (2004) Mg/TiC composites manufactured by pressureless melt infiltration. Scr Mater 51:249–253

    Article  CAS  Google Scholar 

  9. Dong Q, Chen LQ, Zhao MJ, Bi J (2004) Synthesis of TiCp reinforced magnesium matrix composites by in situ reactive infiltration process. Mater Lett 58:920–926

    Article  CAS  Google Scholar 

  10. Cao W, Zhang C, Fan T, Zhang D (2008) In situ synthesis and damping capacities of TiC reinforced magnesium matrix composites. Mater Sci Eng A 496:242–246

    Article  CAS  Google Scholar 

  11. Jo I, Jeon S, Lee E, Cho S, Lee H (2015) Phase formation and interfacial phenomena of the in-situ combustion reaction of Al-Ti-C in TiC/Mg composites. Mater Trans 56:661–664

    Article  CAS  Google Scholar 

  12. Chen L, Guo J, Yu B, Ma Z (2007) Compressive creep behavior of TiC/AZ91D magnesium-matrix composites with interpenetrating networks. J Mater Sci Technol 23(02):207–212

    CAS  Google Scholar 

  13. Lim CYH, Leo DK, Ang JJS, Gupta M (2005) Wear of magnesium composites reinforced with nanosized alumina particulates. Wear 259:620–625

    Article  CAS  Google Scholar 

  14. Contreras A, Leon CA, Drew RAL, Bedolla E (2003) Wettability and spreading kinetics of Al and Mg on TiC. Scr Mater 48:1625–1630

    Article  CAS  Google Scholar 

  15. Xiuqing Z, Haowei W, Lihua L, Naiheng M (2007) In situ synthesis method and damping characterization of magnesium matrix composites. Compos Sci Technol 67:720–727

    Article  CAS  Google Scholar 

  16. Jiang QC, Li XL, Wang HY (2003) Fabrication of TiC particulate reinforced magnesium matrix composites. Scr Mater 48:713–717

    Article  CAS  Google Scholar 

  17. Balakrishnan M, Dinaharan I, Palanivel R, Sivaprakasam R (2015) Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing. J Magnes Alloys 3:76–78. https://doi.org/10.1016/j.jma.2014.12.007

    Article  CAS  Google Scholar 

  18. Gu XY, Sun DQ, Liu L (2008) Transient liquid phase bonding of TiC reinforced magnesium metal matrix composites (TiCP/AZ91D) using aluminum interlayer. Mater Sci Eng A 487:86–92

    Article  CAS  Google Scholar 

  19. Anasori B, Caspi N, Barsoum MW (2014) Fabrication and mechanical properties of pressureless melt infiltrated magnesium alloy composites reinforced with TiC and Ti2AlC particles. Mater Sci Eng A 618:511–522

    Article  CAS  Google Scholar 

  20. Kaneda H, Choh T (1997) Fabrication of particulate reinforced magnesium composites by applying a spontaneous infiltration phenomenon. J Mater Sci 32:47–56

    Article  CAS  Google Scholar 

  21. Ye HZ, Liu XY (2004) Review of recent studies in magnesium matrix composites. J Mater Sci 39:6153–6171

    Article  CAS  Google Scholar 

  22. Contreras A, Salazar M, León CA, Drew RAL, Bedolla E (2000) The kinetic study of the infiltration of aluminum alloys into TiC. Mater Manuf Process 15(2):163–182

    Article  CAS  Google Scholar 

  23. Muscat D, Drew RAL (1994) Modeling the infiltration kinetics of molten aluminum into porous titanium carbide. Metall Mater Trans 25A(11):2357–2370

    Article  CAS  Google Scholar 

  24. Massalski TB (ed) (1990) Binary alloy phase diagrams, vol 3, 2nd edn. American Society for Metals, Metals Park

    Google Scholar 

  25. Shimada S, Kozeki M (1992) Oxidation of TiC at low temperatures. J Mater Sci 27:1869

    Article  CAS  Google Scholar 

  26. Hashin Z, Shtrikman S (1962) On some variational principles in anisotropic and non-homogeneous elasticity. J Mech Phys Solids 10:335–342

    Article  Google Scholar 

  27. Halpin-Tsai JC (1992) Primer on composite materials analysis, 2nd edn. Technomic, Lancaster, pp 165–191

    Google Scholar 

  28. Boccaccini AR, Fan Z (1997) A new approach for the Young’s modulus-porosity correlation of ceramic materials. Ceram Int 23:239–245

    Article  CAS  Google Scholar 

  29. Elsayed A, Kondoh K, Imai H, Umeda J (2010) Microstructure and mechanical properties of hot extruded Mg–Al–Mn–Ca alloy produced by rapid solidification powder metallurgy. Mater Des 31:2444–2453

    Article  CAS  Google Scholar 

  30. Tian J, Shobu K (2004) Hot-pressed AlN–Cu metal matrix composites and their thermal properties. J Mater Sci 39:1309–1313

    Article  CAS  Google Scholar 

  31. Ye HZ, Liu XY, Luan B (2005) In situ synthesis of AlN in Mg–Al alloy by liquid nitridation. J Mater Process Technol 166:79–85

    Article  CAS  Google Scholar 

  32. Mirshahi F, Meratian M (2012) High temperature tensile properties of modified Mg/Mg2Si in situ composite. Mater Des 33:557–562

    Article  CAS  Google Scholar 

  33. Huang Z, Yu S, Liu J, Zhu X (2011) Microstructure and mechanical properties of in situ Mg2Si/AZ91D composites through incorporating fly ash cenospheres. Mater Des 32:4714–4719

    Article  CAS  Google Scholar 

  34. Swaminathan S, Srinivasa RB, Jayaram V (2002) The production of AlN-rich matrix composites by the reactive infiltration of Al alloys in nitrogen. Acta Mater 50:3093–30104

    Article  CAS  Google Scholar 

  35. León CA, Arrollo Y, Bedolla E, Drew RAL (2006) Properties of AlN-based magnesium-matrix composite produced by pressureless infiltration. Mater Sci Forum 502:105–110

    Article  Google Scholar 

  36. Contreras A, López VH, León CA, Drew RAL, Bedolla E (2001) The relation between wetting and infiltration behavior in the Al-1010/TiC and Al-2024/TiC systems. Adv Technol Mater Mater Process 3(1):33–40

    Google Scholar 

  37. Xiu Z, Yang W, Chen G, Jiang L, Ma K, Wu G (2012) Microstructure and tensile properties of Si3N4p/Al-2024 composite fabricated by pressure infiltration method. Mater Des 33:350–355

    Article  CAS  Google Scholar 

  38. Ding-Fwu L, Jow-Lay H, Shao-Ting C (2002) The mechanical properties of AlN/Al composite fabricated by squeeze casting. J Eur Ceram Soc 22:253–261

    Article  Google Scholar 

  39. Zhang Q, Chen G, Wu G, Xiu Z, Luan B (2003) Property characteristics of AlN/Al composite fabricated by squeeze casting technology. Mater Lett 57:1453–1458

    Article  CAS  Google Scholar 

  40. Goh CS, Soh KS, Oon PH, Chua BW (2010) Effect of squeeze casting parameters on the mechanical properties of AZ91-Ca Mg alloys. Mater Des 31(suppl. 1):S50–S53

    Article  CAS  Google Scholar 

  41. Chedru M, Vicens J, Chermant L, Mordike BL (1999) Aluminium–aluminium nitride composites fabricated by melt infiltration under pressure. J Microsc 196:103–112

    Article  CAS  Google Scholar 

  42. Contreras A, Angeles-Chavez C, Flores O, Perez R (2007) Structural, morphological and interfacial characterization of Al-Mg/TiC composites. Mater Charact 58(8–9):685–693

    Article  CAS  Google Scholar 

  43. Couturier R, Ducret D, Merle P, Disson JP, Jouvert P (1997) Elaboration and characterization of metal matrix composite: Al/AlN. J Eur Ceram Soc 17:1861–1866

    Article  CAS  Google Scholar 

  44. Lai SW, Chung DD (1994) Fabrication of particulate aluminum matrix composites by liquid metal infiltration. J Mater Sci 29(12):3128–3150

    Article  CAS  Google Scholar 

  45. Taheri-Nassaj E, Kobashi M, Chou T (1995) Fabrication of an AlN particulate aluminum matrix by a melt stirring method. Scr Mater 32:1923–1927

    Article  CAS  Google Scholar 

  46. Wang L, Zhang BP, Shinohara T (2010) Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions. Mater Des 31(2):857–863

    Article  CAS  Google Scholar 

  47. Bedolla E, Lemus-Ruiz J, Contreras A (2012) Synthesis and characterization of Mg-AZ91/AlN composites. Mater Des 38:91–98

    Article  CAS  Google Scholar 

  48. ASTM C20–00 (2000) Standard test method for apparent porosity, water absorption, apparent specific gravity and bulk density by boiling water. American Society for Testing and Materials

    Google Scholar 

  49. Lloyd DJ (1994) Particle reinforcement aluminum and magnesium matrix composites. Int Mater Rev 39:1–23

    Article  CAS  Google Scholar 

  50. McLeod AD, Gabryel CM (1992) Kinetics of growth of spinel MgAl2O4 on alumina particulate in aluminum alloys containing magnesium. Metall Mater Trans 23A:1279–1283

    Article  CAS  Google Scholar 

  51. Lloyd DJ, Lagacé HP, McLeod AD (1990) Interfacial phenomena in metal matrix composites. In: Ishida H (ed) Controlled interfaces in composites materials. Elsevier Science, New York

    Google Scholar 

  52. Contreras A, Bedolla E, Pérez R (2004) Interfacial phenomena in wettability of TiC by Al–Mg alloys. Acta Mater 52:985–994

    Article  CAS  Google Scholar 

  53. Zheng M, Wu K, Yao C (2001) Characterization of interfacial reaction in squeeze cast SiCw/Mg composites. Mater Lett 47:118–124

    Article  CAS  Google Scholar 

  54. Zheng MY, Wu K, Kamado S, Kojima Y (2003) Aging behavior of squeeze cast SiCw/AZ91 magnesium matrix composite. Mater Sci Eng A 348:67–75

    Article  CAS  Google Scholar 

  55. Taheri-Nassaj E, Kobashi M, Choh T (1995) Fabrication of an AlN particulate aluminium matrix composite by a melt stirring method. Scr Mater 32:1923–1929

    Article  CAS  Google Scholar 

  56. Chedru M, Boitier G, Vicens J, Chermant JL, Mordike BL (1997) Al/AlN composites elaborated by squeeze casting. Key Eng Mater 132–136:1006–1009

    Article  Google Scholar 

  57. Baik Y, Drew RAL (1996) Aluminum nitride: processing and applications. Key Eng Mater 122–124:553–570

    Article  Google Scholar 

  58. León CA, Drew RAL (2002) Small punch testing for assessing the tensile strength of gradient Al-Ni/SiC composites. Mater Lett 56:812–816

    Article  Google Scholar 

  59. FactSage 5.0, Bale CW, Pelton AD, Thompson WT. Ecole Polytechnique de Montréal/Royal Military College, Canada (http://www.crct.polymtl.ca)

  60. Chedru M, Vicens J, Chermant JL, Mordike BL (2001) Transmission electron microscopy studies of squeeze cast Al–AlN composites. J Microsc 201:299–315

    Article  CAS  Google Scholar 

  61. Lai SW, Chung DDL (1994) Superior high-temperature resistance of aluminium nitride particle-reinforced aluminium compared to silicon carbide or alumina particle-reinforced aluminium. J Mater Sci 29:6181–6198

    Article  CAS  Google Scholar 

  62. Kennedy AR, Wyatt SM (2000) The effect of processing on the mechanical properties and interfacial strength of aluminum/TiC MMC’s. Compos Sci Technol 60:307–314

    Article  CAS  Google Scholar 

  63. Muscat D, Shanker K, Drew RAL (1992) Al/TiC composites produced by melt infiltration. Mater Sci Technol 8(11):971–976

    Article  CAS  Google Scholar 

  64. Frage N, Froumin N, Dariel MP (2002) Wetting of TiC by non-reactive liquid metals. Acta Mater 50(2):237–245

    Article  CAS  Google Scholar 

  65. Rambo CR, Travitzky N, Zimmermann K, Greil P (2005) Synthesis of TiC/Ti–Cu composites by pressureless reactive infiltration of TiCu alloy into carbon preforms fabricated by 3D-printing. Mater Lett 59:1028–1031

    Article  CAS  Google Scholar 

  66. Albiter A, Contreras A, Bedolla E, Pérez R (2003) Structural and chemical characterization of precipitates in Al-2024/TiC composites. Compos Part A 34:17–24

    Article  CAS  Google Scholar 

  67. Albiter A, León CA, Drew RAL, Bedolla E (2000) Microstructure and heat-treatment response of Al-2024/TiC composites. Mater Sci Eng A289(1):109–115

    Article  CAS  Google Scholar 

  68. Contreras A, Albiter A, Bedolla E, Perez R (2004) Processing and characterization of Al-cu and Al-Mg base composites reinforced with TiC. Adv Eng Mater 6(9):767–775

    Article  CAS  Google Scholar 

  69. Goicoechea J, García-Cordovilla C, Louis E, Pamies A (1992) Surface tension of binary and ternary aluminum alloys of the systems Al-Si-Mg and Al-Zn-Mg. J Mater Sci 27:5247–5252

    Article  CAS  Google Scholar 

  70. Pai BC, Ramani G, Pillai RM, Satyanarayana KG (1995) Review: role of magnesium in cast aluminum alloy matrix composites. J Mater Sci 30:1903–1911

    Article  CAS  Google Scholar 

  71. Shoutens JE (1992) Some theoretical considerations of the surface tension of liquid metals for metal matrix composites. J Mater Sci 24:2681–2686

    Article  Google Scholar 

  72. Contreras A (2007) Wetting of TiC by Al–Cu alloys and interfacial characterization. J Colloid Interface Sci 311:159–170

    Article  CAS  Google Scholar 

  73. Lloyd DJ (1991) Aspects of fracture in particulate reinforced metal matrix composites. Acta Metall Mater 39:59–71

    Article  CAS  Google Scholar 

  74. Ravi-Kumar NV, Dwarakadasa ES (2000) Effect of matrix strength on the mechanical properties of Al-Zn-Mg/SiCp composites. Compos Part A 31:1139–1145

    Article  Google Scholar 

  75. Fine ME, Conley JG (1990) On the free energy of formation of TiC and Al4C3. Metall Trans 21A:2609–2610

    Article  CAS  Google Scholar 

  76. Yokokawa H, Sakai N, Kawada T, Dakiya M (1991) Chemical potential diagram of Al-Ti-C system: Al4C3 formation on TiC formed in Al-Ti liquids containing carbon. Metall Trans 22A:3075–3076

    Article  CAS  Google Scholar 

  77. Kennedy AR, Weston DP, Jones MI (2001) Reaction in Al-TiC metal matrix composites. Mater Sci Eng A 316:32–38

    Article  Google Scholar 

  78. Frage N, Frumin N, Levin L, Polak M, Dariel MP (1998) High-temperature phase equilibria in the Al-rich corner of the Al-Ti-C system. Metall Mater Trans A 29:1341–1345

    Article  Google Scholar 

  79. Samuel AM, Gauthier J, Samuel FH (1996) Microstructural aspects of the dissolution and melting of Al2Cu phase in Al-Si alloys during solution heat treatment. Metall Mater Trans A 27:1785–1798

    Article  Google Scholar 

  80. Aguilar EA, Leon CA, Contreras A, Lopez VH, Drew RAL, Bedolla E (2002) Wettability and phase formation in TiC/Al-alloys assemblies. Compos Part A 33:1425–1428

    Article  Google Scholar 

  81. López VH, Leon CA, Kennedy A et al (2003) Spreading mechanism of molten Al-alloys on TiC substrates. Mater Sci Forum 416–418(3):395–400

    Article  Google Scholar 

  82. Leon CA, Lopez VH, Bedolla E, Drew RAL (2002) Wettability of TiC by commercial aluminum alloys. J Mater Sci 37:3509–3514

    Article  CAS  Google Scholar 

  83. Albiter A, Contreras A, Salazar M, Gonzalez JG (2006) Corrosion behaviour of aluminium metal matrix composites reinforced with TiC processed by pressureless melt infiltration. J Appl Electrochem 36:303–308

    Article  CAS  Google Scholar 

  84. Duran-Olvera JM, Orozco-Cruz R, Galván-Martínez R, León CA, Contreras A (2017) Characterization of TiC/Ni composite immersed in synthetic seawater. MRS Adv 2(50):2865–2873

    Article  CAS  Google Scholar 

  85. Alvarez-Lemus N, Leon CA, Contreras A, Orozco-Cruz R, Galvan-Martinez R (2015) Chapter 15: Electrochemical characterization of the aluminum–copper composite material reinforced with titanium carbide immersed in seawater. In: Perez R, Contreras A, Esparza R (eds) Materials characterization. Springer, Cham, pp 147–156

    Google Scholar 

  86. Lugo-Quintal J, Díaz-Ballote L, Veleva L, Contreras A (2009) Effect of Li on the corrosion behavior of Al-Cu/SiCp composites. Adv Mater Res 68:133–144

    Article  CAS  Google Scholar 

  87. Santamaria D (2001) Efecto del tratamiento térmico de solución y precipitación a un material compuesto de matriz metálica TiC/Al-6061. Dissertation of Master Thesis, Instituto de Investigación en Metalurgia y Materiales, UMSNH, Morelia, México

    Google Scholar 

  88. Harris GL (1995) Properties of silicon carbide. Materials Science Research Center of Excellence. Howard University, Washington DC, p 304

    Google Scholar 

  89. Snead LL (2004) Limits on irradiation-induced thermal conductivity and electrical resistivity in silicon carbide materials. J Nucl Mater 329–333:524–529

    Article  CAS  Google Scholar 

  90. Wang H, Zhang R, Hu X et al (2008) Characterization of a powder metallurgy SiC/Cu–Al composite. J Mater Process Technol 197:43–48

    Article  CAS  Google Scholar 

  91. Kocjak M et al (1993) Fundamentals of metal matrix composites. Blutterworth-Heinemann, Waltham, pp 3–42

    Google Scholar 

  92. Chu K, Jia C, Tian W et al (2010) Thermal conductivity of spark plasma sintering consolidated SiCp/Al composites containing pores: numerical study and experimental validation. Compos Part A 41:161–167

    Article  CAS  Google Scholar 

  93. Chen Q, Yang W, Dong R et al (2014) Interfacial microstructure and its effect on thermal conductivity of SiCp/Cu composites. Mater Des 63:109–114

    Article  CAS  Google Scholar 

  94. Hasselman DPH, Johnson LF (1987) Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater 21:508–515

    Article  Google Scholar 

  95. Beffort O, Long S, Cayron C et al (2007) Alloying effects on microstructure and mechanical properties of high volume fraction SiC-particle reinforced Al-MMCs made by squeeze casting infiltration. Compos Sci Technol 67:737–745

    Article  CAS  Google Scholar 

  96. Jae-Chu L, Ji-Young B, Sung-Bae P et al (1998) Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite. Acta Mater 46(5):1771–1780

    Article  Google Scholar 

  97. Ren S, He X, Qu X et al (2007) Effect of Mg and Si in the aluminum on the thermo-mechanical properties of pressureless infiltrated SiCp/Al composites. Compos Sci Technol 67(10):2103–2113

    Article  CAS  Google Scholar 

  98. Rajan T, Pillai R, Pai B (1998) Reinforcement coatings and interfaces in aluminium metal matrix composites. J Mater Sci 3:3491–3503

    Article  Google Scholar 

  99. Kim Y, Lee J (2006) Processing and interfacial bonding strength of 2014 Al matrix composites reinforced with oxidized SiC particles. Mater Sci Eng A 420:8–12

    Article  CAS  Google Scholar 

  100. Xue C, Yu J (2014) Enhanced thermal transfer and bending strength of SiC/Al composite with controlled interfacial reaction. Mater Des 53:74–78

    Article  CAS  Google Scholar 

  101. Zalapa O (2016) Síntesis y evaluación de propiedades termofísicas de compuestos de matriz de Mg-AZ91E reforzados con partículas de SiC. Dissertation of Master Thesis, Instituto de Investigación en Metalurgia y Materiales, UMSNH, México

    Google Scholar 

  102. Ureña A et al (2004) Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites. Compos Sci Technol 64(12):1843–1854

    Article  CAS  Google Scholar 

  103. Kerner EH (1956) The elastic and thermo-elastic properties of composite media. Proc Phys Soc 69:808

    Article  Google Scholar 

  104. Basavarajappa S, Chandramohan G, Mahadevan A (2007) Influence of speed on the dry sliding wear behavior and subsurface deformation on hybrid metal matrix composite. Wear 262:1007–1012

    Article  CAS  Google Scholar 

  105. Prakash K, Balasundar P, Nagaraja S et al (2016) Mechanical and wear behaviour of Mg-SiC-Gr hybrid composites. J Magnes Alloys 4:197–206

    Article  CAS  Google Scholar 

  106. Sozhamannan G, Balasivanandha S, Venkatagalapathy V (2012) Effect of processing parameters on metal matrix composites: stir casting process. J Surf Eng Mater Adv Technol 2:11–15

    CAS  Google Scholar 

  107. Arreola C (2017) Evaluación de propiedades mecánicas y comportamiento al desgaste de compuestos AZ91E/AlN fabricados por fundición con agitación. Dissertation of Master Thesis, Instituto de Investigación en Metalurgia y Materiales, UMSNH, México

    Google Scholar 

  108. Grabowski G, Pedzich Z (2007) Residual stresses in particulate composites with alumina and zirconia matrices. J Eur Ceram Soc 27:1287–1292

    Article  CAS  Google Scholar 

  109. Gutknecht D, Chevalier J, Garnier V et al (2007) Key role of processing zirconia composites for orthopedic application. J Eur Ceram Soc 27:1547–1552

    Article  CAS  Google Scholar 

  110. Nakao E, Ono M, Lee SK et al (2005) Critical crack-healing condition for SiC whisker reinforced alumina under stress. J Eur Ceram Soc 25:3649–3655

    Article  CAS  Google Scholar 

  111. Yang JF, Ohji T, Sekino T et al (2001) Phase transformation, microstructure and mechanical properties of Si3N4/SiC composite. J Eur Ceram Soc 21(12):2185–2192

    Article  Google Scholar 

  112. Sekino T, Nakajima T, Ueda S et al (1997) Reduction and sintering of a nickel-dispersed-alumina composite and its properties. J Am Ceram Soc 80:1139–1148

    Article  CAS  Google Scholar 

  113. Wada S, Suganuma M, Kitagawa Y et al (1999) Comparison between pulse electric current sintering and hot pressing of silicon nitride ceramics. J Ceram Soc Jpn 107(10):887–890

    Article  CAS  Google Scholar 

  114. Xie G, Ohashi O, Sato T et al (2004) Effect of Mg on the sintering of Al-Mg alloy powders by pulse electric current sintering process. Mater Trans 45(3):904–909

    Article  CAS  Google Scholar 

  115. Dang KQ, Nanko M, Kawahara M et al (2009) Densification of alumina powder by using PECS process with different pulse electric current wave forms. Mater Sci Forum 620–622:101–104

    Article  Google Scholar 

  116. Suk MJ, Choi SI, Kim JS et al (2003) Fabrication of a porous material with a porosity gradient by a pulsed electric current sintering process. Met Mater Intern 9(6):599–603

    Article  CAS  Google Scholar 

  117. Xie G, Ohashi O, Yamaguchi N (2004) Reduction of surface oxide films in Al–Mg alloy powders by pulse electric current sintering. J Mater Res 19(3):815–819

    Article  CAS  Google Scholar 

  118. Matsubara T, Shibutani T, Uenishi K et al (2000) Fabrication of a thick surface layer of Al3Ti on Ti substrate by reactive-pulsed electric current sintering. Intermetallics 8:815–822

    Article  CAS  Google Scholar 

  119. Salas-Villaseñor AL, Lemus-Ruiz J, Nanko M et al (2009) Crack disappearance by high-temperature oxidation of alumina toughened by Ni nano-particles. Adv Mater Res 68:34–43

    Article  Google Scholar 

  120. Salas-Villaseñor AL (2008) Auto-eliminación de grietas por oxidación a elevada temperatura de alúmina reforzada con níquel. Dissertation of Master Thesis, Instituto de Investigación en Metalurgia y Materiales, UMSNH, Morelia, México

    Google Scholar 

  121. Niihara K, Kim BS, Nakayama T et al (2004) Fabrication of complex-shaped alumina/nickel nanocomposites by gel casting process. J Eur Ceram Soc 24:3419–3425

    Article  CAS  Google Scholar 

  122. Lu J, Gao L, Sun J et al (2000) Effect of nickel content on the sintering behavior, mechanical and dielectric properties of Al2O3/Ni composites from coated powders. Mater Sci Eng A 293:223–228

    Article  Google Scholar 

  123. Lieberthal M, Kaplan WD (2001) Processing and properties of Al2O3 nanocomposites reinforced with sub-micron Ni and NiAl2O4. Mater Sci Eng A 302:83–91

    Article  Google Scholar 

  124. Tuan WH (2005) Design of multiphase materials. Key Eng Mater 280–283:963–966

    Google Scholar 

  125. JIS R-1607 Japanese Industrial Standard (1990) Testing methods for fracture toughness of high performance ceramics. Japanese Standards Association, Tokyo

    Google Scholar 

  126. Miyoshi T, Sagawa N, Sassa T (1985) Study on fracture toughness evaluation for structural ceramics. Trans Jpn Soc Mech Eng 51A(471):2487–2489

    Article  Google Scholar 

  127. Casellas D, Nagl MM, Llanes L et al (2003) Fracture toughness of alumina and ZTA ceramics: microstructural coarsening effects. J Mater Process Technol 143–144:148–152

    Article  CAS  Google Scholar 

  128. Reyes A, Bedolla E, Perez R, Contreras A (2016) Effect of heat treatment on the mechanical and microstructural characterization of Mg-AZ91E/TiC composites. Compos Interfaces:1–17

    Google Scholar 

  129. Reyes A (2012) Caracterización interfacial del compuesto MgAZ91E/TiC con y sin tratamiento térmico. Dissertation of Master Thesis, Instituto de Investigación en Metalurgia y Materiales, UMSNH, Morelia, México

    Google Scholar 

  130. Munitz A, Jo I, Nuechterlein J, Garrett W, Moore JJ, Kaufman MJ (2012) Microstructural characterization of cast Mg-TiC MMC’s. Int J Mater Sci 2:15–19

    Google Scholar 

  131. Contreras A, Albiter A, Pérez R (2004) Microstructural properties of the Al-Mg/TiC composites obtained by infiltration techniques. J Phys Condens Matter 16(22):S2241–S2249

    Article  CAS  Google Scholar 

  132. Halpin JC, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16(5):344–352

    Article  CAS  Google Scholar 

  133. Xiuqing Z, Lihua L, Naiheng M, Haowei W (2006) Effect of aging hardening on in situ synthesis magnesium matrix composites. Mater Chem Phys 96(1):9–15

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Contreras Cuevas, A., Bedolla Becerril, E., Martínez, M.S., Lemus Ruiz, J. (2018). Fabrication and Characterization of Composites. In: Metal Matrix Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-91854-9_4

Download citation

Publish with us

Policies and ethics