We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Gauge Invariance for Gravitation and Gradient Continuum | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Gauge Invariance for Gravitation and Gradient Continuum

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Covariance and Gauge Invariance in Continuum Physics

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 834 Accesses

Abstract

Geometrization of continuum physics that is the formulation of constitutive laws and conservation laws equations with respect to a reference spacetime involves some steps. First of all, physical measurable quantities should be identified with geometrical variables (metric, torsion, and curvature on the material manifold) and other additional variables if any. Second point, the spacetime is generally a dynamical background with its metric, torsion, and curvature, such is the case for general relativity. Then it is required to specify how all these geometrical variables are generated and modified by physical objects, namely material particle, material elements as line, surface, volume, defects, and how these physical objects evolve during the interaction of the continuum matter and the spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Index 0 stands for time variable, then the Lagrangian \(\mathcal {L}\) also stands for dynamical situation.

  2. 2.

    Lagrangian density of type I as \(\mathcal {L}(g_{ij}, \partial _k g_{ij}, \partial _l \partial _k g_{ij})\) or of type II as \(\mathcal {L}(g_{ij}, \nabla _k g_{ij}, \nabla _l \nabla _k g_{ij})\) was considered in Manoff (1999) where three kinds of variational procedures, say the functional variation, the Lie variation, and the covariant variation, were used to derive the fields equations of Einstein’s gravitation theory.

  3. 3.

    The Euclidean connection derived from the metric tensor of a reference body was mostly the connection used in continuum mechanics for over two centuries, e.g. Rakotomanana (2003).

  4. 4.

    As shown by Kibble (1961), the Lagrangian density of the form \(\mathcal {L} (x^\mu , \varPhi , \partial _\alpha \varPhi , \partial _\beta \partial _\alpha \varPhi )\) should be replaced by a Lagrangian of the form \(\mathcal {L} (\varPhi , \nabla _\alpha \varPhi , \nabla _\beta \nabla _\alpha \varPhi ) \sqrt { \mathrm {Det} \mathbf {g}}\) which is invariant under a general coordinates transformations, which are nothing else than Poincaré’s local transformations.

  5. 5.

    The dependence on coordinates x μ is dropped according to results in e.g. Kibble (1961).

References

  • Acedo L (2015) Autoparallel vs. Geodesic trajectories in a model of torsion gravity. Universe 1:422–445

    Article  Google Scholar 

  • Agiasofitou EK, Lazar M (2009) Conservation and balance laws in linear elasticity. J Elast 94:69–85

    Google Scholar 

  • Aldrovandi R, Pereira JG (2007) Gravitation: on search of the missing torsion. Ann Fond Louis de Broglie 32(2–3):229–251

    Google Scholar 

  • Ali SA, Cafaro C, Capozziello S, Corda C (2009) On the Poincaré gauge theory of gravitation. Int J Theor Phys 48:3426–3448

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson IM (1978) On the structure of divergence-free tensors. J Math Phys 19(12):2570–2575

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson IM (1981) The principle of minimal gravitational coupling. Arch Ration Mech Anal 75:349–372

    Article  MathSciNet  MATH  Google Scholar 

  • Antonio TN, Rakotomanana L (2011) On the form-invariance of Lagrangian function for higher gradient continuum. In: Altenbach H, Maugin G, Erofeev V (eds) Mechanics of generalized continua. Springer, New York, pp 291–322

    Google Scholar 

  • Antonio TN, Buisson M, Rakotomanana L (2011) Wave propagation within some non-homogeneous continua. Académie des Sciences de Paris: Comptes Rendus Mécanique 339:779–788

    Google Scholar 

  • Appleby PG (1977) Inertial frames in classical mechanics. Arch Ration Mech Anal 67(4):337–350

    Google Scholar 

  • Bain J (2004) Theories of Newtonian gravity and empirical indistinguishability. Stud Hist Philos Mod Phys 35:345–376

    Article  MathSciNet  MATH  Google Scholar 

  • Baldacci R, Augusti V, Capurro M (1979) A micro relativistic dislocation theory. Lincei Memoria Sc Fisiche, ecc S VIII, vol XV, Sez II 2:23–68

    Google Scholar 

  • Banerjee R, Roy D (2011) Poincaré gauge, Hamiltonian symmetries, and trivial gauge transformations. Phys Rev D 84:124034-1/8

    Google Scholar 

  • Bernal AN, Sánchez M (2003) Leibnizian, Galilean, and Newtonian structures of spacetime. J Math Phys 44(3):1129–1149

    Article  MathSciNet  MATH  Google Scholar 

  • Betram A, Svendsen B (2001) On material objectivity and reduced constitutive equations. Arch Mech 53(6):653–675

    Google Scholar 

  • Bilby BA, Bullough R, Smith E (1955) Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc R Soc Lond A 231:263–273

    Article  MathSciNet  Google Scholar 

  • Birkhoff GD, Langer RE (1923) Relativity and modern physics. Harvard University Press, Boston

    Google Scholar 

  • Boehmer CG, Downes RJ (2014) From continuum mechanics to general relativity. Int J Mod Phys D 23(12):1442015/1-6

    Google Scholar 

  • Bruzzo U (1987) The global Utiyama theorem in Einstein–Cartan theory. J Math Phys 28(9):2074–2077

    Article  MathSciNet  MATH  Google Scholar 

  • Capoziello S, De Laurentis D (2009) Gravity from local Poincaré gauge invariance. Int J Geom Meth Mod Phys 6(1):1–24

    Google Scholar 

  • Capoziello S, De Laurentis D (2011) Extended theories of gravity. Phys Rep 509:167–321

    Google Scholar 

  • Capozziello S, De Laurentis M, Francaviglia M, Mercadante S (2009) From dark energy and dark matter to dark metric. Found Phys 39:1161–1176

    Article  MathSciNet  MATH  Google Scholar 

  • Cartan E (1922) Sur les équations de la gravitation d’Einstein. J Math Pures Appl 1:141–203

    Google Scholar 

  • Cartan E (1986) On manifolds with affine connection and the theory of general relativity (translated by A. Magon and A. Ashtekar). Monographs and textbooks in physical science, vol 1. Bibliopolis, Naples

    Google Scholar 

  • Carter B (1973) Elastic perturbation theory in general relativity and a variation principle for a rotating solid star. Commun Math Phys 30:261–286

    Article  MathSciNet  MATH  Google Scholar 

  • Carter B, Quintana H (1977) Gravitational and acoustic waves in an elastic medium. Phys Rev D 16(10):2928–2938

    Article  Google Scholar 

  • Cho YM (1976a) Einstein Lagrangian as the translational Yang-Mills Lagrangian. Phys Rev D 14(10):2521–2525

    Article  MathSciNet  Google Scholar 

  • Clayton JD, Bammann DJ, McDowell DL (2005) A geometric framework for the kinematics of crystals with defects. Philos Mag 85(33–35):3983–4010

    Article  Google Scholar 

  • Clifton T, Ferreira PG, Padilla A, Skordis C (2012) Modified gravity and cosmology. Phys Rep 513:1–189

    Article  MathSciNet  Google Scholar 

  • Curnier A, Rakotomanana LR (1991) Generalized strain and stress measures: critical survey and new results. Eng Trans (Pol Acad Sci) 39(3–4):461–538

    Google Scholar 

  • Dadhich N, Pons JM (2012) On the equivalence if the Einstein-Hilbert and the Einstein-Palatini formulations of general relativity for an arbitrary connection. Gen Relativ Gravit 44:2337–2352

    Article  MathSciNet  MATH  Google Scholar 

  • Defrise P (1953) Analyse géométrique de la cinématique des milieux continus. Institut Royal Météorologique de Belgique – Publications Série B 6:5–63

    Google Scholar 

  • Dirac PAM (1974) An action principle for the motion of particles. Gen Relativ Gravit 5(6):741–748

    Article  MathSciNet  Google Scholar 

  • Dixon WG (1975) On the uniqueness of the Newtonian theory as a geometric theory of gravitation. Commun Math Phys 45:167–182

    Article  MathSciNet  MATH  Google Scholar 

  • Duval C, Kunzle HP (1978) Dynamics of continua and particles from general covariance of Newtonian gravitation theory. Rep Math Phys 13(3):351–368

    Article  MathSciNet  MATH  Google Scholar 

  • Duval C, Burdet G, Kunzle HP, Perrin M (1985) Bargmann structures and Newton–Cartan theory. Phys Rev D 31(8):1841–1853

    Article  MathSciNet  Google Scholar 

  • Ehlers J (1973) The nature and concept of spacetime. In: Mehra J (ed) The Physicist’s concept of nature. Reidel Publishing Company, Dordrecht, pp 71–91

    Google Scholar 

  • Ehlers J, Geroch R (2004) Equation of motion of small bodies in relativity. Ann Phys 309:232–236

    Article  MathSciNet  MATH  Google Scholar 

  • Exirifard Q, Sheikh-Jabbari MM (2008) Lovelock gravity at the crossroads of Palatini and metric formulations. Phys Lett B 661:158–161

    Article  MathSciNet  MATH  Google Scholar 

  • Ferraro R, Fiorini F (2011) Spherical symmetric static spacetimes in vacuum f(T) gravity. Phys Rev D 84:083518-1/8

    Google Scholar 

  • Fiziev P, Kleinert H (1995) New action principle for classical particle trajectories in spaces with torsion. Europhys Lett 35(4):241–246

    Article  Google Scholar 

  • Forger M, Römer H (2004) Currents and the energy-momentum tensor in classical field theory: a fresh look at an old problem. Ann Phys 309:306–389

    Article  MathSciNet  MATH  Google Scholar 

  • Futhazar G, Le Marrec L, Rakotomanana-Ravelonarivo L (2014) Covariant gradient continua applied to wave propagation within defective material. Arch Appl Mech 84(9–11):1339–1356

    Article  MATH  Google Scholar 

  • Garcia De Andrade LC (2004) Non-Riemannian geometry of vortex acoustics. Phys Rev D 70:064004-1/064004-5

    Google Scholar 

  • Garcia De Andrade LC (2005) On the necessity of non-Riemannian acoustic spacetime in fluids with vorticity. Phys Lett A 346:327–329

    Google Scholar 

  • Goenner HFM (1984) A variational principle for Newton–Cartan theory. Gen Relativ Gravit 16(6):513–526

    Article  MathSciNet  MATH  Google Scholar 

  • Gonseth F (1926) Les fondements des mathématiqes: De la géométrie d’Euclide à la relativité générale et à l’intuitionisme Ed. Albert Blanchard, Paris

    Google Scholar 

  • Hammond RT (1990) Second order equations and quadratic Lagrangians. J Math Phys 31:2221–2224

    Article  MathSciNet  MATH  Google Scholar 

  • Hammond RT (2002) Torsion gravity. Rep Prog Phys 65:599–649

    Article  MathSciNet  Google Scholar 

  • Havas P (1964) Four-dimensional formulations of Newtonian mechanics and their relation to the special and the general theory of relativity. Rev Mod Phys 36:938–965

    Article  MathSciNet  MATH  Google Scholar 

  • Hayashi K, Shirafuji T (1979) New general relativity. Phys Rev D 19:3524–3553

    Article  MathSciNet  MATH  Google Scholar 

  • Hehl FW (1971) Dow does one measure torsion of space-time? Phys Lett 36A(3):225–226

    Article  MathSciNet  Google Scholar 

  • Hehl FW (1985) On the kinematics of the torsion of spacetime. Found Phys 15(4):451–471

    Article  MathSciNet  Google Scholar 

  • Hehl FW, Kerlick GD (1976/1978) Metric-affine variational principles in general relativity. I. Riemannian spacetime. Gen Relativ Gravit 9(8):691–710

    Article  MathSciNet  MATH  Google Scholar 

  • Hehl FW, von der Heyde P (1973) Spin and the structure of spacetime. Ann Inst Henri Poincaré Sect A 19(2):179–196

    Google Scholar 

  • Hehl FW, von der Heyde P, Kerlick GD (1974) General relativity with spin and torsion and its deviation from Einstein’s theory. Phys Rev D 16(4):1066–1069

    Article  MathSciNet  Google Scholar 

  • Hehl FW, von der Heyde P, Kerlick GD, Nester JM (1976) General relativity with spin and torsion: foundations and prospects. Rev Mod Phys 48(3):393–416

    Article  MathSciNet  MATH  Google Scholar 

  • Hehl FW, McCrea JD, Mielke EW, Ne’eman Y (1995) Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys Rep 258:1–173

    Article  MathSciNet  Google Scholar 

  • Hehl FW, Obukhov YN, Puetzfield D (2013) On Poincaré gauge theory of gravity, its equation of motions, and gravity Probe B. Phys Lett A 377:1775–1781

    Article  MathSciNet  MATH  Google Scholar 

  • Hojman S (1976/1978) Lagrangian theory of the motion of spinning particles in torsion gravitational theories. Phys Rev D 18(8):2741–2744

    Article  MathSciNet  Google Scholar 

  • Kadianakis ND (1996) The kinematics of continua and the concept of connection on classical spacetime. Int J Eng Sci 34(3):289–298

    Article  MathSciNet  MATH  Google Scholar 

  • Katanaev MO, Volovich IV (1992) Theory of defects in solids and three-dimensional gravity. Ann Phys 216:1–28

    Article  MathSciNet  MATH  Google Scholar 

  • Kibble TWB (1961) Lorentz invariance and gravitational field. J Math Phys 3(2):212–221

    Google Scholar 

  • Kijowski J, Magli G (1992) Relativistic elastomechanics as a Lagrangian field theory. J Geom Phys 9:207–223

    Article  MathSciNet  MATH  Google Scholar 

  • Kleinert H (1987) Gravity as a theory of defects in a crystal with only second gradient elasticity. Ann Phys 499(2):117–119

    Article  Google Scholar 

  • Kleinert H (1999) Universality principle for orbital angular momentum and spin in gravity with torsion. Gen Relativ Gravit 32(7):1271–1280

    Article  MathSciNet  MATH  Google Scholar 

  • Kleinert H (2000) Nonholonomic mapping principle for classical and quantum mechanics in spaces with curvature and torsion. Gen Relativ Gravit 32(5):769–839

    Article  MathSciNet  MATH  Google Scholar 

  • Kleinert H (2008) Multivalued fields: in condensed matter, electromagnetism, and gravitation. World Scientific, Singapore

    Google Scholar 

  • Kleman M, Friedel J (2008) Disclinations, dislocations, and continuous defects: a reappraisal. Rev Mod Phys 80:61–115

    Article  MathSciNet  MATH  Google Scholar 

  • Knox E (2013) Effective spacetime geometry. Stud Hist Phil Sci B 44(3):346–356

    Article  MathSciNet  MATH  Google Scholar 

  • Kobelev V On the Lagrangian and instability of medium with defects. Meccanica. https://doi.org/10.1007/s11012-011-9480-7

  • Koivisto T (2011) New variational principles as alternatives to the Palatini method. Phys Rev D 83:101501/4

    Google Scholar 

  • Krause J (1976) Christoffel symbols and inertia in flat spacetime theory. Int J Theor Phys 15(11):801–807

    Article  MathSciNet  Google Scholar 

  • Kroener E (1981) Continuum theory of defects. In: Balian et al (ed) Physique des défauts. Les Houches 28 July–29 August. North-Holland, Amsterdam, pp 219–315

    Google Scholar 

  • Lazar M (2002) An elastoplastic theory of dislocations as a physical field with torsion. J Phys A: Math Gen 35:1983–2004

    Google Scholar 

  • Lazar M, Anastassiadis C (2008) The gauge theory of dislocations: conservation and balance laws. Philos Mag 88(11):1673–1699

    Article  Google Scholar 

  • Le KC, Stumpf H (1996) On the determination of the crystal reference in nonlinear continuum theory of dislocations. Proc R Soc Lond A 452:359–37

    Article  MATH  Google Scholar 

  • Leclerc M (2005) Mathisson-Papapetrou equations in metric and gauge theories of gravity in a Lagrangian formulation. Classical Quantum Gravitation 22:3203–3221

    Article  MathSciNet  MATH  Google Scholar 

  • Lehmkuhl D (2011) Mass-energy-momentum in general relativity. Only there because of spacetime? Br J Philos Sci 62(3):453–488

    Google Scholar 

  • Li B, Sotiriou TP, Barrow JD (2011) f(T) gravity and local Lorentz invariance. Phys Rev D 83:064035/1-pp 064035/5

    Google Scholar 

  • Lompay RR (2014) On the energy-momentum and spin tensors in the Riemann–Cartan space. Gen Relativ Gravit 46(1692):1–123

    Google Scholar 

  • Lovelock D (1971) The Einstein tensor and its generalizations. J Math Phys 12:498–501

    Article  MathSciNet  MATH  Google Scholar 

  • Lovelock D, Rund H (1975) Tensors, differential forms, and variational principles, chap 8. Wiley, New York

    Google Scholar 

  • Maier R (2014) Static vacuum solutions in non-Riemannian gravity. Gen Relativ Gravit 46(1830):1–15

    Google Scholar 

  • Maluf JW, da Rocha-Neto JF, Toríbio TML, Castello-Branco KH (2002) Energy and angular momentum of gravitational field in the tele parallel geometry. Phys Rev D 65:124001/1 - 12

    Google Scholar 

  • Malyshev C (2000) The T(3)-gauge model, the Einstein-like gauge equation, and Volterra dislocations with modified asymptotics. Ann Phys 286:249–277

    Article  MathSciNet  MATH  Google Scholar 

  • Manoff S (1999) Lagrangian theory of tensor fields over spaces with contra variant and covariant affine connections and metrics and its application to Einstein’s theory of gravitation in \(\overline {V}_4\) spaces. Acta Appl Math 55:51–125

    Google Scholar 

  • Manoff S (2001b) Deviation operator and deviation equations over spaces with affine connections and metrics. J Geom Phys 39:337–350

    Article  MathSciNet  MATH  Google Scholar 

  • Mao Y, Tegmark M, Guth AH, Cabi S (2007) Constraining torsion with Gravity Probe B. Phys Rev D 76:104029/1-26

    Google Scholar 

  • Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Mathisson M (2010) New mechanics of material system. In: General relativity and gravitation, vol 42, pp 1011–1048/Translated by A Ehlers from the Original Paper: Neue mechanik materieller Systeme, Acta Physica Polonica 6, 1937, pp 163–200

    Google Scholar 

  • Maugin GA (1978) Exact relativistic theory of wave propagation in prestressed nonlinear elastic solids. Ann Inst Henri Poincaré Sect A 28(2):155–185

    Google Scholar 

  • Maugin GA (1993) Material inhomogeneities in elasticity. Chapman and Hall, London

    Chapter  MATH  Google Scholar 

  • McKellar RJ (1981) The uniqueness of gravity as a Poincaré or Lorentz gauge theory. J Math Phys 22 (12):2934–2942

    Article  MathSciNet  MATH  Google Scholar 

  • Minazzoli O, Karko T (2012) New derivation of the Lagrangian of a perfect fluid with a barotropic equation of state. Phys Rev D 86:087502/1-4

    Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1:417–438

    Article  Google Scholar 

  • Nakahara (1996) Geometry, topology, and physics. In: Brower D (ed) Graduate student series in physics. Institute of Physics Publishing, Bristol

    Google Scholar 

  • Obukhov YN, Puetzfeld D (2014) Conservation laws in gravity: a unified framework. Phys Rev D 90(02004):1–10

    Google Scholar 

  • Obukhov YN, Ponomariev VN, Zhytnikov VV (1989) Quadratic Poincaré gauge theory of gravity: a comparison with the general relativity theory. Gen Relativ Gravit 21(11):1107–1142

    Google Scholar 

  • Padmanabhan T (2003) Cosmological constant-the weight of vacuum. Phys Rep 380:235–320

    Google Scholar 

  • Papapetrou A (1951) Spinning test-particles in general relativity I. Proc R Soc Lond A 209:248–258

    Article  MathSciNet  MATH  Google Scholar 

  • Petrov AN, Lompay RR (2013) Covariantized Noether identities and conservation laws for perturbations in metric theories of gravity. Gen Relativ Gravit 45:545–579

    Article  MATH  Google Scholar 

  • Pettey D (1971) One-one-mappings onto locally connected generalized continua. Pac J Math 50(2):573–582

    Article  MathSciNet  MATH  Google Scholar 

  • Polizzotto C (2013a) A second strain gradient elasticity theory with second velocity gradient inertia- Part I: constitutive equations and quasi-static behavior. Int J Solids Struct 50:3749–3765

    Article  Google Scholar 

  • Polizzotto C (2013b) A second strain gradient elasticity theory with second velocity gradient inertia- Part I: dynamic quasi-static behavior. Int J Solids Struct 50:37–3777

    Google Scholar 

  • Pons JM (2011) Noether symmetries, energy-momentum tensors, and conformal invariance in classical field theory. J Math Phys 52:012904-1/21

    Article  MathSciNet  MATH  Google Scholar 

  • Poplawski NJ (2009) A variational formulation of relativistic hydrodynamics. Phys Lett A 373:2620–2621

    Article  MathSciNet  MATH  Google Scholar 

  • Poplawski NJ (2010) Torsion as electromagnetism and spin. Int J Theor Phys 49(7):1481–1488

    Article  MathSciNet  MATH  Google Scholar 

  • Prasanna AR (1975a) Maxwell’s equations in Riemann–Cartan space U 4. Phys Lett A 54(1):17–18

    Article  MathSciNet  Google Scholar 

  • Puetzfeld D, Obukhov YN (2008) Probing non-Riemannian spacetime geometry. Phys Lett A 372:6711–6716

    Article  MathSciNet  MATH  Google Scholar 

  • Puetzfeld D, Obukhov YN (2013a) Covariant equations of motion for test bodies in gravitational theories with general nonminimal coupling. Phys Lett D 87:044045/1–7

    Google Scholar 

  • Puetzfeld D, Obukhov YN (2013b) Equations of motion in gravity theories with nonminimal coupling: a loophole to detect torsion macroscopically. Phys Lett D 88:064025/1–9

    Google Scholar 

  • Rakotomanana RL (1997) Contribution à la modélisation géométrique et thermodynamique d’une classe de milieux faiblement continus. Arch Ration Mech Anal 141:199–236

    Article  MathSciNet  MATH  Google Scholar 

  • Rakotomanana RL (2003) A geometric approach to thermomechanics of dissipating continua. Progress in Mathematical Physics Series. Birkhaüser, Boston

    Google Scholar 

  • Rakotomanana RL (2005) Some class of SG continuum models to connect various length scales in plastic deformation. In: Steinmann P, Maugin GA (ed) Mechanics of material forces, chap 32. Springer, Berlin

    Google Scholar 

  • Rakotomanana RL (2009) Élements de dynamiques des structures et solides déformables. Presses Polytechniques et Universitaires Romandes, Lausanne

    Google Scholar 

  • Ramaniraka NA, Rakotomanana LR (2000) Models of continuum with microcrack distribution. Math Mech Solids 5:301–336

    Article  MathSciNet  MATH  Google Scholar 

  • Rosen G (1972) Galilean invariance and the general covariance of nonrelativistic laws. Am J Phys 40:683–687

    Article  Google Scholar 

  • Ruggiero ML, Tartaglia A (2003) Einstein–Cartan as theory of defects in spacetime. Am J Phys 71(12):1303–1313

    Google Scholar 

  • Ryder L (2009) Introduction to general relativity. Cambridge University Press, New York

    Google Scholar 

  • Ryskin G (1985) Misconception which led to the “material frame-indifference” controversy. Phys Rev A 32(2):1239–1240

    Article  Google Scholar 

  • Saa A (1995) Volume-forms and minimal action principles in affine manifolds. J Geom Phys 15:102–108

    Article  MathSciNet  MATH  Google Scholar 

  • Schutz BF (1970) Perfect fluids in general relativity: velocity potentials and a variational principle. Phys Rev D 2(12):2762–2773

    Article  MathSciNet  MATH  Google Scholar 

  • Sciama DW (1964) The physical structure of general relativity. In: Reviews of modern physics, Contributed papers for relativity, nuclear physics, and post deadline papers, January, pp 463–469

    Article  Google Scholar 

  • Shapiro IL (2002) Physical aspects of spacetime torsion. Phys Rep 357:113–213

    Article  MathSciNet  MATH  Google Scholar 

  • Shen W, Moritz H (1996) On the separation of gravitation and inertia and the determination of the relativistic gravity field in the case of free motion. J Geod 70:633–644

    Article  MATH  Google Scholar 

  • Smalley LL, Krisch JP (1992) Minimal coupling of electromagnetic fields in Riemann–Cartan space-times for perfect fluids with spin density. J Math Phys 33(3):1073–1081

    Article  MathSciNet  Google Scholar 

  • Söderholm L (1970) A principle of objectivity for relativistic continuum mechanics. Arch Ration Mech Anal 39(2):89–107

    Article  MathSciNet  MATH  Google Scholar 

  • Sotiriou TP (2008) The viability of theories with matter coupled to the Ricci scalar. Phys Lett B 664:225–228

    Article  MathSciNet  MATH  Google Scholar 

  • Sotiriou TP (2009) \(f \left ( R \right )\) gravity, torsion and non-metricity. Classical Quantum Gravitation 26:152001

    Google Scholar 

  • Sotiriou TP, Faraoni V (2010) \(f \left ( R \right )\) theories of gravity. Rev Mod Phys 82:451–497

    Article  MATH  Google Scholar 

  • Sotiriou TP, Liberati S (2007) Metric-affine \(f \left ( R \right )\) theories of gravity. Ann Phys 322:935–966

    Article  MathSciNet  MATH  Google Scholar 

  • Sotiriou TP, Li B, Barrow JD (2011) Generalizations of tele parallel gravity and local Lorentz symmetry. Phys Rev D 83:104030/1-104030/6

    Google Scholar 

  • Svendsen B, Betram A (1999) On frame-indifference and form-invariance in constitutive theory. Acta Mech 132:195–207

    Article  MathSciNet  Google Scholar 

  • Tamanini N (2012) Variational approach to gravitational theories with two independent connections. Phys Rev D 86:024004/1-9

    Google Scholar 

  • Taub AH (1954) General relativistic variational principle for perfect fluids. Phys Rev 94(6):1468–1470

    Article  MathSciNet  Google Scholar 

  • Terrier A, Miyagaki J, Fujie H, Hayashi K, Rakotomanana L (2005) Delay of intracortical bone remodelling following a stress change: a theoretical and experimental study. Clin Biomech 20(9):998–1006

    Article  Google Scholar 

  • Truesdell C, Noll W (1991) The non-linear field theories of mechanics, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Utiyama R (1956) Invariant theoretical interpretation of interaction. Phys Rev 101:1597–1607

    Article  MathSciNet  MATH  Google Scholar 

  • Verçyn A (1990) Metric-torsion gauge theory of continuum line defects. Int J Theor Phys 29(1):7–21

    Article  MathSciNet  Google Scholar 

  • Vitagliano V, Sotiriou TP, Liberati S (2011) The dynamics of metric-affine gravity. Ann Phys 326:1259–1273

    Article  MathSciNet  MATH  Google Scholar 

  • Wang CC (1967) Geometric structure of simple bodies, or mathematical foundation for the theory of continuous distributions of dislocations. Arch Ration Mech Anal 27:33–94

    Article  MathSciNet  MATH  Google Scholar 

  • Weyl H (1918) Gravitation and electricity. Sitzungsber Preuss Akad Berlin 465:24–37

    Google Scholar 

  • Wigner E (1939) On unitary representations of the inhomogeneous Lorentz group. Ann Math 40(1):149–204

    Article  MathSciNet  MATH  Google Scholar 

  • Williams G (1973) A discussion of causality and the Lorentz group. Int J Theor Phys 7(6):415–421

    Article  MathSciNet  Google Scholar 

  • Yang CN, Mills RL (1954) Conservation of isotopic spin and isotopic gauge invariance. Phys Rev 96:191–201

    Article  MathSciNet  MATH  Google Scholar 

  • Yasskin PB, Stoeger WR (1980) Propagation equations for test bodies with spin and rotation in theories of gravity with torsion. Phys Rev D 21(8):2081–2093

    Article  MathSciNet  Google Scholar 

  • Zeeman EC (1964) Causality implies the Lorentz group. J Math Phys 5(4):490–493

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

R. Rakotomanana, L. (2018). Gauge Invariance for Gravitation and Gradient Continuum. In: Covariance and Gauge Invariance in Continuum Physics. Progress in Mathematical Physics, vol 73. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-91782-5_4

Download citation

Publish with us

Policies and ethics