Skip to main content

36 Growth Patterns of Mediterranean Calcifying Cold-Water Corals

  • Chapter
  • First Online:
Mediterranean Cold-Water Corals: Past, Present and Future

Part of the book series: Coral Reefs of the World ((CORW,volume 9))

Abstract

Skeletal growth is a key physiological function, which in the case of calcifying organisms, provides support for the general colony structure together, whilst simultaneously providing protection for internal soft tissues. Given this fundamental importance, growth patterns can therefore reflect the health status of organisms. Additionally, engineer species forming 3D structures, such as scleractinian cold-water corals, enhance local biodiversity through the provision of new structural and hydrodynamic habitats. Furthermore, cold-water corals may be used as paleoclimate indicators, and act as sources for novel pharmaceutical compounds as well as represent significant sinks for CO2 sequestration. At time of writing, cold-water coral reefs are facing several serious threats, particularly in the Mediterranean Sea, where the combined effects of climate change and other anthropogenic environmental disturbances are interacting in regions of coral colonisation. The characterisation of the Mediterranean cold-water coral growth patterns is thus a crucial step for accurate forecasting of reef resilience under environmental change and for the establishment of adequate conservation strategies. From the organisation of soft tissues to the resulting mineralogical structures formed from the polyp to the reef scale, this chapter gives an overview of the state of the art of the current understanding of scleractinian cold-water coral growth patterns. The main environmental parameters that control calcification and their influence on cold-water corals in the context of ongoing global environmental change are illustrated with examples from studies conducted with different calcifying species from the Mediterranean Sea, utilising both aquaria and in situ experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater 15:959–970

    Article  CAS  Google Scholar 

  • Addamo AA, Vertino A, Stolarski J, et al (2016) Merging scleractinian genera: the overhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol Biol 16:108. https://doi.org/10.1186/s12862-016-0654-8

  • Adkins JF, Boyle EA, Curry WB, et al (2003) Stable isotopes in deep-sea corals and a new mechanisms for “vital effects”. Geochim Cosmochim Acta 67:1129–1143

    Article  CAS  Google Scholar 

  • Adkins JF, Henderson GM, Wang SL, et al (2004) Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrata. Earth Planet Sci Lett 227:481–490

    Article  CAS  Google Scholar 

  • Allemand D, Ferrier-Pagès C, Furla P, et al (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. CR Palevol 3:453–467

    Article  Google Scholar 

  • Allemand D, Tambutté É, Zoccola D, et al (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 119–150

    Google Scholar 

  • Barnes DJ (1970) Coral skeletons: an explanation of their growth and structure. Science 170:1305–1308

    Article  CAS  PubMed  Google Scholar 

  • Barnett TP, Pierce DW, AchutaRao KM, et al (2005) Penetration of human-induced warming into the world’s oceans. Science 309:284–287

    Article  CAS  PubMed  Google Scholar 

  • Bell N, Smith J (1999) Coral growing on North Sea oil rigs. Nature 402:601

    Article  CAS  Google Scholar 

  • Bertucci A, Moya A, Tambutté S, et al (2013) Carbonic anhydrases in anthozoan corals—a review. Bioorg Med Chem 21:1437–1450

    Article  CAS  PubMed  Google Scholar 

  • Brooke S, Young CM (2009) In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar Ecol Progr Ser 397:153–161

    Article  Google Scholar 

  • Brooke S, Ross SW, Bane JM, et al (2013) Temperature tolerance of the deep-sea coral Lophelia pertusa from the southeastern United States. Deep-Sea Res Part 2 Top Stud Oceanogr 92:240–248

    Article  Google Scholar 

  • Bryan WB, Hill D (1941) Spherulitic crystallization as a mechanism of skeletal growth in the hexacorals. Proc R Soc Qld 52:78–91

    Google Scholar 

  • Buhl-Mortensen L, Vanreusel A, Gooday A, et al (2010) Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar Ecol 31:21–50

    Article  Google Scholar 

  • Canals M, Puig P, de Durrieu de Madron X, et al (2006) Flushing submarine canyons. Nature 444:354–357

    Article  CAS  PubMed  Google Scholar 

  • Carter JG (1980) Guide to bivalve shell microstructures. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms. Plenum Press, New York, pp 645–673

    Google Scholar 

  • Cartwright JH, Checa AG, Gale JD, et al (2012) Calcium carbonate polyamorphism and its role in biomineralization: how many amorphous calcium carbonates are there? Angew Chem Int Ed 51:11960–11970

    Article  CAS  Google Scholar 

  • Cheng H, Adkins JF, Edwards RL, et al (2000) U-Th dating of deep-sea corals. Geochim Cosmochim Acta 64:2401–2416

    CAS  Google Scholar 

  • Chisholm JRM, Gattuso JP (1991) Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities. Limnol Oceanogr 36:1232–1239

    Article  CAS  Google Scholar 

  • Cohen AL, McConnaughey TA (2003) Geochemical perspectives on coral mineralization. In: Dove PM, De Yoreo JJ, Weiner S (eds) Biomineralization, reviews in mineralogy and geochemistry. Mineralogical Society of America and the Geochemical Society, Washington, DC, 54:151–187

    Google Scholar 

  • Cölfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed 44:5576–5591

    Article  CAS  Google Scholar 

  • Constantz BR (1989) Skeletal organisation in Acropora. In: Crick RE (ed) Origin, evolution and modern aspects of biomineralization in plants and animals. Plenum Press, New York, pp 175–200

    Google Scholar 

  • Cordes E, Arnaud-Haond S, Bergstad OA, et al (2016) Cold-water corals. In: Inniss L, Simcock A (eds) The first global integrated marine assessment: World Ocean Assessment I. United Nations regular process for global reporting and assessment of the state of the marine environment, including socioeconomic aspects. United Nations, New York, 28 p

    Google Scholar 

  • Cuif JP, Dauphin Y (1998) Microstructural and physicochemical characterization of centers of calcification in septa of some recent Scleractinian corals. Paläontol Z 72:257–270

    Article  Google Scholar 

  • Cuif JP, Dauphin Y, Sorauf J (2011) Biominerals and fossils through time. Cambridge University Press, Cambridge, p 490

    Google Scholar 

  • D’Onghia G, Indennidate A, Giove A, et al (2011) Distribution and behaviour of deep-sea benthopelagic fauna observed using towed cameras in the Santa Maria di Leuca cold-water coral province. Mar Ecol Progr Ser 443:95–110

    Article  Google Scholar 

  • Davies AJ, Guinotte JM (2011) Global habitat suitability for framework-forming cold-water corals. PLoS One 6:e18483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies AJ, Duineveld GCA, Lavaleye MSS, et al (2009) Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef complex. Limnol Oceanogr 54:620–629

    Article  Google Scholar 

  • Douarin M, Sinclair DJ, Elliot M, et al (2014) Changes in fossil assemblage in sediment cores from Mingulay Reef Complex (NE Atlantic): implications for coral reef buid-up. Deep-Sea Res Part 2 Top Stud Oceanogr 99:286–296

    Article  Google Scholar 

  • Duncan PM (1877) On the rapidity of growth and variability of some Madreporaria on an Atlantic Cable, with remarks upon the rate of accumulation of foraminiferal deposits. Proc R Soc Lond 26:133–137

    Google Scholar 

  • Falini G, Reggi M, Fermani S, et al (2013) Control of aragonite deposition in colonial corals by intra-skeletal macromolecules. J Struct Biol 183:226–238

    Article  CAS  PubMed  Google Scholar 

  • Fallon SJ, Thresher RE, Adkins J (2014) Age and growth of the cold-water scleractinian Solenosmilia variabilis and its reef on SW Pacific seamounts. Coral Reefs 33:31–38

    Article  Google Scholar 

  • Fiala-Medioni A, Madurell T, Romans P, et al (2012) Rov and submersible surveys on faunal assemblages in a deep-sea canyon (rech Lacaze-Duthiers, western Mediterranean Sea). Vie Milieu 62:173–190

    Google Scholar 

  • Fink HG, Wienberg C, Hebbeln D, et al (2012) Oxygen control on Holocene cold-water coral development in the eastern Mediterranean Sea. Deep-Sea Res Part 1 Oceanogr Res Pap 62:89–96

    Article  CAS  Google Scholar 

  • Form AU, Riebesell U (2012) Acclimatation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob Chang Biol 18:843–853

    Article  Google Scholar 

  • Försterra G, Häussermann V (2003) First report on large scleractinian (Cnidaria: Anthozoa) accumulations in cold-temperate shallow water of south Chilean fjords. Zool Verh Leiden 345:117–128

    Google Scholar 

  • Freiwald A, Henrich R, Pätzold J (1997) Anatomy of a deep-water coral reef mound from Stjernsund, West Finnmark. North Nor SEPM Spec Publ 56:141–162

    Google Scholar 

  • Freiwald A, Fossa JH, Grehan A, et al (2004) Cold-water coral reefs: out of sight – no longer out of mind. UNEP-WCMC, Cambridge, 86 p

    Google Scholar 

  • Galli G, Bramanti L, Priori C, et al (2016) Modelling red coral (Corallium rubrum) growth in response to temperature and nutrition. Ecol Model 337:137–148

    Article  CAS  Google Scholar 

  • Gass SE, Roberts JM (2006) The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: colony growth, recruitment and environmental controls on distribution. Mar Pollut Bull 52:549–559

    Article  CAS  PubMed  Google Scholar 

  • Gass SE, Roberts JM (2011) Growth and branching patterns of Lophelia pertusa (Scleractinia) from the North Sea. J Mar Biol Assoc UK 91:831–835

    Article  Google Scholar 

  • Glazier DS (2005) Beyond the: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol Rev 80:611

    Article  PubMed  Google Scholar 

  • Gori A, Orejas C, Madurell T, et al (2013) Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean). Biogeosciences 10:2049–2060

    Article  Google Scholar 

  • Gori A, Reynaud S, Orejas C, et al (2014) Physiological performance of the cold-water coral Dendrophyllia cornigera reveals its preference for temperate environments. Coral Reefs 33:665–674

    Article  Google Scholar 

  • Gori A, Ferrier-Pagès C, Hennige S, et al (2016) Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ 4:e1606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hassenrück C, Jantzen C, Försterra G, et al (2013) Rates of apical septal extension of Desmophyllum dianthus: effect of association with endolithic photo-autotrophs. Mar Biol 160:2919–2927

    Article  Google Scholar 

  • Hennige SJ, Morrison CL, Form AU, et al (2014a) Self-recognition in corals facilites deep-sea habitat engineering. Sci Rep 4:6782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennige SJ, Wicks LC, Kamenos NA, et al (2014b) Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep-Sea Res Part 2 Top Stud Oceanogr 99:27–35

    Article  CAS  Google Scholar 

  • Hennige SJ, Wicks LC, Kamenos NA, et al (2015) Hidden impacts of ocean acidification to live and dead coral framework. Proc R Soc B 282:20150990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann M, Estournel C, Déqué M, et al (2008) Dense water formation in the Gulf of Lions shelf: impact of atmospheric interannual variability and climate change. Cont Shelf Res 28:2092–2112

    Article  Google Scholar 

  • Heussner S, Durrieu de Madron X, Calafat A, et al (2006) Spatial and temporal variability of download particle fluxes on a continental slope: lessons from an 8-yr experiment in the Gulf of Lions (NW Mediterranean). Mar Geol 234:63–92

    Article  Google Scholar 

  • Hovland M, Mortensen PB (1999) Norske korallrev og prosesser i havbunnen (Norwegian coral reefs and seebed processes). J Grieg, Bergen, p 167

    Google Scholar 

  • IPCC (2014) In: Pachauri RK, Meyer LA (eds) Climate change 2014: synthesis report. Contribution of working groups I, II and III tot the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, 151 p

    Google Scholar 

  • Johnston IS (1980) The ultrastructure of skeletogenesis in hermatypic corals. Int Rev Cytol 67:171–214

    Article  CAS  Google Scholar 

  • Keller NB, Os’kina NS (2008) Habitat temperature ranges of azooxantellate scleractinian corals in the world ocean. Oceanology 48:77–84

    Article  Google Scholar 

  • Kiriakoulakis K, Fisher E, Wolff GA, et al (2005) Lipids and nitrogen isotopes of two deep-water corals from the North-East Atlantic: initial results and implications. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 715–729

    Chapter  Google Scholar 

  • Knutson DW, Buddemeier RW, Smith SV (1972) Coral chronometers – seasonal growth bands in corals. Science 177:270–272

    Article  CAS  PubMed  Google Scholar 

  • Larcom AA, McKean DL, Brooks JM, et al (2014) Growth rates, densities, and distribution of Lophelia pertusa on artificial structures in the Gulf of Mexico. Deep-Sea Res Part 1 Oceanogr Res Pap 85:101–109

    Article  Google Scholar 

  • Larsson AI, van Oevelen D, Purser A, et al (2013) Tolerance to long-term exposure of suspended benthic sediments ad drill cuttings in the cold-water coral Lophelia pertusa. Mar Pollut Bull 70:176–188

    Article  CAS  PubMed  Google Scholar 

  • Lartaud F, Pareige S, de Rafelis M, et al (2013) A new approach for assessing cold-water coral growth in situ using fluorescent calcein staining. Aquat Living Resour 26:187–196

    Article  Google Scholar 

  • Lartaud F, Pareige S, de Rafelis M, et al (2014) Temporal changes in the growth of two Mediterranean cold-water coral species, in situ and in aquaria. Deep-Sea Res Part 2 Top Stud Oceanogr 99:64–70

    Article  Google Scholar 

  • Lartaud F, Galli G, Raza A, et al (2017a) Growth patterns in long-lived coral species. In: Rossi S, Bramanti L, Gori A, et al (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 595–626

    Chapter  Google Scholar 

  • Lartaud F, Meistertzheim AL, Peru E, et al (2017b) In situ growth experiments of reef-building cold-water corals: the good, the bad and the ugly. Deep-Sea Res Part 1 Oceanogr Res Pap 121:70–78

    Article  Google Scholar 

  • Lastras G, Canals M, Ballesteros E, et al (2016) Cold-water corals and anthropogenic impacts in La Fonera submarine canyon head, Northwestern Mediterranean Sea. PLoS One 11:e0155729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lazier AV, Smith JE, Risk MJ, et al (1999) The skeletal structure of Desmophyllum cristagalli: the use of deep-water corals in sclerochronology. Lethaia 32:119–130

    Article  Google Scholar 

  • Le Tissier MDA, Clayton B, Brown BE, et al (1994) Skeletal correlates of coral density banding and an evaluation of radiography as used in sclerochronology. Mar Ecol Progr Ser 110:29–44

    Article  Google Scholar 

  • Levin LA, Le Bris N (2015) The deep ocean under climate change. Science 350:766–768

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Correa M, Montagna P, Vendrell-Simon B, et al (2010) Stable isotopes (δ18O and δ13C), trace and minor element compositions of Recent scleractinians and Last Glacial bivalves at the Santa Maria di Leuca deep-water coral province, Ionian sea. Deep-Sea Res Part 2 Top Stud Oceanogr 57:471–486

    Article  CAS  Google Scholar 

  • Maier C, Hegeman J, Weinbauer MG, et al (2009) Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 6:1671–1680

    Article  CAS  Google Scholar 

  • Maier C, Schubert A, Berzunza Sànchez MM, et al (2013) End of the century pCO2 levels do not impact calcification in Mediterranean cold-water corals. PLoS One 8:e62655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier C, Popp P, Sollfrank N, et al (2016) Effects of elevated pCO2 and feeding on net calcification and energy budget of the Mediterranean cold-water coral Madrepora oculata. J Exp Biol 219:3208–3217

    Article  PubMed  Google Scholar 

  • Marali S, Wisshak M, Lopez-Correa M, et al (2013) Skeletal microstructure and stable isotope signature of three bathyal solitary cold-water corals from the Azores. Palaeogeogr Palaeoclimatol Palaeoecol 373:25–38

    Article  Google Scholar 

  • Marin F, Luquet G, Marie B, et al (2008) Molluscan shell proteins: primary structure, origin, and evolution. Curr Top Dev Biol 80:209–276

    Article  CAS  PubMed  Google Scholar 

  • McCulloch M, Trotter J, Montagna P, et al (2012) Resilience of cold- water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim Cosmochim Acta 87:21–34

    Article  CAS  Google Scholar 

  • Meistertzheim AL, Lartaud F, Arnaud-Haond S, et al (2016) Patterns of bacteria- host associations suggest different ecological strategies between two reef building cold-water coral species. Deep-Sea Res Part 1 Oceanogr Res Pap 114:12–22

    Article  Google Scholar 

  • Mikkelsen N, Erlenkeuser H, Killingley JS, et al (1982) Norwegian corals: radiocarbon and stable isotopes in Lophelia pertusa. Boreas 11:163–171

    Article  Google Scholar 

  • Miller MW (1995) Growth of a temperate coral: effects of temperature, light, depth, and heterotrophy. Mar Ecol Progr Ser 122:217–225

    Article  Google Scholar 

  • Montero-Serrano JC, Frank N, Tisnérat-Laborde N, et al (2013) Decadal changes in the mid-depth water mass dynamic of the Northeastern Atlantic margin (Bay of Biscay). Earth Planet Sci Lett 364:134–144

    Article  CAS  Google Scholar 

  • Mortensen PB (2001) Aquarium observations on the deep-water coral Lophelia pertusa (L., 1958) (scleractinia) and selected associated invertebrates. Ophelia 54:83–104

    Article  Google Scholar 

  • Mortensen PB, Rapp HT (1998) Oxygen and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L.) (Anthozoa, Scleractinia): implications for determining of linear extension rates. Sarsia 83:433–446

    Article  Google Scholar 

  • Mouchi V, Crowley QG, Jackson AL, et al (2014) Potential seasonal calibration for palaeoenvironmental reconstruction using skeletal microstructures and strontium measurements from the cold-water coral Lophelia pertusa. J Quat Sci 29:803–814

    Article  Google Scholar 

  • Mouchi V, Vonlanthen P, Verrecchia EP, et al (2017) Multi-scale crystallographic ordering in the cold-water coral Lophelia pertusa. Sci Rep 7:8987

    Google Scholar 

  • Movilla J, Gori A, Calvo E, et al (2014a) Resistance of two Mediterranean cold-water coral species to low-pH conditions. Water 5:59–67

    Google Scholar 

  • Movilla J, Orejas C, Calvo E, et al (2014b) Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs 33:675–686

    Article  Google Scholar 

  • Mueller CE, Lundälv T, Middelburg JJ, et al (2013) The symbiosis between Lophelia pertusa and Eunice norvegica stimulates coral calcification and worm assimilation. PLoS One 8:e58660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naumann MS, Orejas C, Ferrier-Pagès C (2013) High thermal tolerance of two Mediterranean cold-water coral species maintained in aquaria. Coral Reefs 32:749–754

    Article  Google Scholar 

  • Naumann MK, Orejas C, Ferrier-Pagès C (2014) Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep-Sea Res Part 2 Top Stud Oceanogr 99:36–41

    Article  CAS  Google Scholar 

  • Orejas C, Gori A, Gili JM (2008) Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria. Coral Reefs 27:255

    Article  Google Scholar 

  • Orejas C, Gori A, Lo Iacono C, et al (2009) Cold-water corals in the Cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and anthropogenic impact. Mar Ecol Progr Ser 397:37–51

    Article  Google Scholar 

  • Orejas C, Ferrier-Pagès C, Reynaud S, et al (2011a) Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar Ecol Progr Ser 429:57–65

    Article  Google Scholar 

  • Orejas C, Ferrier-Pagès C, Reynaud S, et al (2011b) Experimental comparison of skeletal growth rates in the cold-water coral Madrepora oculata Linnaeus, 1758 and three tropical sceractinian corals. J Exp Mar Biol Ecol 405:1–5

    Article  Google Scholar 

  • Palanques A, Durrieu de Madron X, Puig P, et al (2006) Suspended sediment fluxes and transport processes in the Gulf of Lions submarine canyons. The role of storms and dense water cascading. Mar Geol 234:43–61

    Article  Google Scholar 

  • Palmiéri J, Orr JC, Dutay JC, et al (2015) Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea. Biogeosciences 12:781–802

    Article  CAS  Google Scholar 

  • Pätzold J (1984) Growth rythms recorded in stable isotopes and density bands in the reef coral Porites lobata (Cebu, Philippines). Coral Reefs 3:87–90

    Article  Google Scholar 

  • Pons-Branchu E, Hillaire-Marcel C, Deschamps P, et al (2005) Early diagenesis impact on precise U-series dating of deep-sea corals: example of a 100–200 year old Lophelia pertusa sample from the Northeast Atlantic. Geochim Cosmochim Acta 69:4865–4879

    Article  CAS  Google Scholar 

  • Raddatz J, Liebetrau V, Rüggeberg A, et al (2013) Stable Sr-isotope, Sr/Ca, Mg/Ca, Li/Ca and Mg/Li ratios in the scleractinian cold-water coral Lophelia pertusa. Chem Geol 352:143–152

    Article  CAS  Google Scholar 

  • Ramirez-Llodra E, Brandt A, Danovaro R, et al (2010) Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7:2851–2899

    Article  Google Scholar 

  • Reed JK (2002) Deep-water Oculina coral reefs of Florida: biology, impacts, and management. Hydrobiologia 471:43–55

    Article  Google Scholar 

  • Reitner J (2005) Calcifying extracellular mucus substances (EMS) of Madrepora oculata – a first geobiological approach. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 731–744

    Google Scholar 

  • Risk MJ, Heikoop JM, Snow MG, et al (2002) Lifespans and growth patterns of two deep-sea corals: Primnoa resedaeformis and Desmophyllum cristagalli. Hydrobiologia 471:125–131

    Article  Google Scholar 

  • Risk MJ, Hall-Spencer J, Williams B (2005) Climate records from the Faroe-Shetland Channel using Lophelia pertusa (Linnaeus, 1758). In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 1097–1108

    Chapter  Google Scholar 

  • Roark EB, Guilderson TP, Dunbar RB, et al (2006) Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals. Mar Ecol Progr Ser 327:1–14

    Article  CAS  Google Scholar 

  • Roberts JM (2002) The occurrence of the coral Lophelia pertusa and other conspicuous epifauna around an oil platform in the North Sea. J Soc Underw Technol 25:83–91

    Article  Google Scholar 

  • Roberts JM (2005) Reef-aggregating behaviour by symbiotic eunicid polychaetes from cold-water corals: do worms assemble reefs? J Mar Biol Assoc UK 85:813–819

    Article  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  CAS  PubMed  Google Scholar 

  • Roberts JM, Wheeler A, Freiwald A, et al (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, New York, p 334. https://doi.org/10.1017/CBO9780511581588

  • Roder C, Berumen ML, Bouwmeester J, et al (2013) First biological measurements of deep-sea corals from the Red Sea. Sci Rep 3:2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodolfo Metalpa R, Montagna P, Aliani S, et al (2015) Calcification is not the Achilles’ heel of cold-water corals in an acidifying ocean. Glob Chang Biol 21:2238–2248

    Article  PubMed  Google Scholar 

  • Rollion-Bard C, Blamart D (2014) SIMS method and examples of applications in coral biomineralization. In: DiMasi E, Gower LB (eds) Biomineralization sourcebook: characterization of biominerals and biomimetic materials. Taylor & Francis Group, London, pp 249–258

    Chapter  Google Scholar 

  • Rollion-Bard C, Blamart D, Cuif JP, et al (2010) In situ measurements of oxygen isotopic composition in deep-sea coral, Lophelia pertusa: re-examination of the current geochemical models of biomineralization. Geochim Cosmochim Acta 74:1338–1349

    Article  CAS  Google Scholar 

  • Sabatier P, Reyss JL, Hall-Spencer J, et al (2012) 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world’s largest cold-water coral reef. Biogeosciences 9:1253–1265

    Article  CAS  Google Scholar 

  • Sherwood O, Scott D, Risk M, et al (2005) Radiocarbon evidence for annual growth rings in the deep-sea octocoral Primnoa resedaeformis. Mar Ecol Progr Ser 301:129–134

    Article  Google Scholar 

  • Somot S, Sevault F, Deque M (2006) Transient climate change scenario simulation of the Mediterranean Sea for the 21st century using a high-resolution ocean circulation model. Clim Dyn 27:851–879

    Article  Google Scholar 

  • Stolarski J (2003) Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: a biocalcification proxy. Acta Palaeontol Pol 48:497–530

    Google Scholar 

  • Tambutté E, Allemand D, Mueller E, et al (1996) A compartmental approach to mechanisms of calcification in hermatypic corals. J Exp Biol 199:1029–1041

    Google Scholar 

  • Tambutté S, Holcomb M, Ferrier-Pagès C, et al (2011) Coral biomineralization: from the gene to the environment. J Exp Mar Biol Ecol 408:58–78

    Article  Google Scholar 

  • Taviani M, Freiwald A, Zibrowius H (2005) Deep coral growth in the Mediterranean Sea: an overview. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 137–156

    Chapter  Google Scholar 

  • van Haren H, Mienis F, Duineveld GCA, et al (2014) High-resolution temperature observations of a trapped nonlinear diurnal tide influencing cold-water corals on the Logachev mounds. Progr Oceanogr 125:16–25

    Article  Google Scholar 

  • Vertino A, Savini A, Rosso A, et al (2010) Benthic habitat characterization and distribution from two representative sites of the deep-water SML Coral Province (Mediterranean). Deep-Sea Res Part 2 Top Stud Oceanogr 57:380–396

    Article  Google Scholar 

  • Wainwright SA (1964) Studies of the mineral phase of coral skeleton. Exp Cell Res 34:213–230

    Article  CAS  Google Scholar 

  • Waller RG, Tyler PA (2005) The reproductive biology of two deep-water, reef-building scleractinians from the NE Atlantic Ocean. Coral Reefs 24:514–522

    Article  Google Scholar 

  • Weiner S, Levi-Kalisman Y, Raz S, et al (2003) Biologically formed amorphous calcium carbonate. Connect Tissue Res 44:214–218

    Article  CAS  PubMed  Google Scholar 

  • Wienberg C, Hebbeln D, Fink HG, et al (2009) Scleractinian cold-water corals in the Gulf of Cádiz – first clues about their spatial and temporal distribution. Deep-Sea Res Part 1 Oceanogr Res Pap 56:1873–1893

    Article  Google Scholar 

  • Wilson JB (1979) Patch’ development of the deep-water coral Lophelia pertusa (L.) on Rockall Bank. J Mar Biol Assoc UK 59:165–177

    Article  Google Scholar 

Cross-References

  • Aymà A, Aguzzi J, Canals M, et al (this volume) Occurrence of living cold-water corals at large depths within submarine canyons of the Northwestern Mediterranean Sea

    Google Scholar 

  • Chimienti G, Bo M, Taviani M, et al (this volume) Occurrence and biogeography of Mediterranean cold-water corals

    Google Scholar 

  • D’Onghia G (this volume) Cold-water coral as shelter, feeding and life-history critical habitats for fish species: ecological interactions and fishing impact

    Google Scholar 

  • Fourt M, Goujard A, Chevaldonné P (this volume) Working with visual methods, comparison among the french deep-sea Canyons

    Google Scholar 

  • Lastras G, Sanchez-Vidal A, Canals M (this volume) A cold-water coral habitat in La Fonera submarine Canyon, Northwestern Mediterranean Sea

    Google Scholar 

  • Maier C, Weinbauer MG, Gattuso JP (this volume) Fate of Mediterranean scleractinian cold-water corals as a result of global climate change. A synthesis

    Google Scholar 

  • Movilla J (this volume) A case study: variability in the calcification response of Mediterranean cold-water corals to ocean acidification

    Google Scholar 

  • Orejas C, Taviani M, Ambroso S, et al (this volume) Cold-water coral in aquaria: advances and challenges. A focus on the Mediterranean

    Google Scholar 

  • Puig P, Gili JM (this volume) Submarine Canyons in the Mediterranean: a shelter for cold-water corals

    Google Scholar 

  • Reynaud S, Ferrier-Pagès C (this volume) Biology and ecophysiology of Mediterranean cold-water corals

    Google Scholar 

  • Rueda JL, Urra J, Aguilar R, et al (this volume) Cold-water coral associated fauna in the Mediterranean sea and adjacent areas

    Google Scholar 

  • Taviani M, Vertino A, Angeletti L, et al (this volume) Paleoecology of Mediterranean cold-water corals

    Google Scholar 

Download references

Acknowledgements

FL, LC and NLB works on CWC have been supported under the chair ‘Biodiversity, extreme marine environments and global change’ of UPMC supported by Fondation Total. LC doctoral contract is supported by UPMC (ED129 Doctoral school of environmental sciences). VM work presented in this paper was made possible by the ENS Ph.D. programme. The Earth and Natural Sciences Doctoral Studies Programme is funded under the Programme for Research in Third-Level Institutions Cycle-5 and co-funded under the European Regional Development Fund. Autun Purser is acknowledged for his support in editing the English language of the manuscript. We also thank the guest editor for his advices and inviting us to contribute to this chapter, and two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Lartaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lartaud, F., Mouchi, V., Chapron, L., Meistertzheim, AL., Le Bris, N. (2019). 36 Growth Patterns of Mediterranean Calcifying Cold-Water Corals. In: Orejas, C., Jiménez, C. (eds) Mediterranean Cold-Water Corals: Past, Present and Future. Coral Reefs of the World, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-91608-8_36

Download citation

Publish with us

Policies and ethics