Skip to main content

A Multi-Agent Problem in a New Depiction

  • Conference paper
  • First Online:
  • 1864 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10842))

Abstract

This paper contains a new depiction of the Multi-Agent Problem as motivated by the so-called Nurse Rostering Problem, which forms a workable subcase of this general problem of Artificial Intelligence. Multi-Agent Problem will be presented as a scheduling problem with an additional planning component. The next, the problem will be generalized and different constraints will be put forward. Finally, some workable subcases of Multi-Agent Problem will be implemented in PROLOG-solvers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    All of these constraints are typical for scheduling problems of this type to be known as (usually) NP-hard – see: [4].

  2. 2.

    This fact plays no important role as the main objective of this juxtaposition consists in the quantitative representation alone, which will be later combined with qualitative temporal constraints (of Allen’s sort) for a use of further investigations.

  3. 3.

    This binary representation can be also exchanged by a classical one: \(X_{n,d} = z\) as presented in [4].

  4. 4.

    More precisely: multi-valued situations.

  5. 5.

    As mentioned, we rather prefer to think about these values as normalized to [0, 1] – as \(\frac{1}{3}, \frac{2}{3}\) etc. instead of 1, 2, or 3. We make use values 0, 1, 2, 3 because of restrictions imposed on PROLOG-syntax.

References

  1. Armstrong, W.: Determinates of the utility function. Econ. J. 49, 453–467 (1939)

    Article  Google Scholar 

  2. Armstrong, W.: Uncertainty and the utility function. Econ. J. 58, 1–10 (1949)

    Article  Google Scholar 

  3. Burke, E.K., Curtois, T., Qu, R., Vanden Berghe, G.: A scatter search approach to the nurse rostering problem. J. Oper. Res. Soc. 61, 1667–1679 (2010)

    Article  Google Scholar 

  4. Cheang, B., Li, H., Lim, A., Rodrigues, B.: Nurse rostering problems—a bibliographic survey. Eur. J. Oper. Res. 151, 447–460 (2003)

    Article  MathSciNet  Google Scholar 

  5. Davidson, D.: Hempel on explaining action. In: Essays on Actiona and Events, pp. 261–275 (1976)

    Chapter  Google Scholar 

  6. Dechter, R., Meiri, I., Pearl, J.: On fuzzy temporal constraints networks. Temporal Constraints Netw. 49(1–3), 61–95 (1991)

    MATH  Google Scholar 

  7. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: a review of applications, methods and models. Eur. J. Oper. Res. 153(1), 3–27 (2004)

    Article  MathSciNet  Google Scholar 

  8. Halpern, J.Y.: Defining relative likehood in partially-ordered preferential structure. J. Artif. Intell. Res. 7, 1–24 (1997)

    Article  Google Scholar 

  9. Jobczyk, K., Ligeza, A.: Fuzzy-temporal approach to the handling of temporal interval relations and preferences. In: Proceeding of INISTA, pp. 1–8 (2015)

    Google Scholar 

  10. Jobczyk, K., Ligeza, A.: A general method of the hybrid controller construction for temporal planning with preferences. In: Proceeding of FedCSIS, pp. 61–70 (2016)

    Google Scholar 

  11. Jobczyk, K., Ligeza, A.: Multi-valued Halpern-Shoham logic for temporal Allen’s relations and preferences. In: Proceedings of the Annual International Conference of Fuzzy Systems (FuzzIEEE) (2016, page to appear)

    Google Scholar 

  12. Jobczyk, K., Ligeza, A.: Towards a new convolution-based approach to the specification of STPU-solutions. In: FUZZ-IEEE, pp. 782–789 (2016)

    Google Scholar 

  13. Jobczyk, K., Ligȩza, A., Bouzid, M., Karczmarczuk, J.: Comparative approach to the multi-valued logic construction for preferences. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 172–183. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19324-3_16

    Chapter  Google Scholar 

  14. Khatib, L., Morris, P., Morris, R., Rossi, F.: Temporal reasoning about preferences. In: Proceedings of IJCAI-01, pp. 322–327 (2001)

    Google Scholar 

  15. Leierson, C.E., Saxe, J.B.: A mixed-integer linear programming problem which is efficiently solvable. In: Proceedings 21st Annual Allerton Conference on Communications, Control, and Computing, pp. 204–213 (1983)

    Google Scholar 

  16. Liao, Y.Z., Wong, C.K.: An algorithm to compact a VLSI symbolic layout with mixed constraints. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2(2), 62–69 (1983)

    Article  Google Scholar 

  17. Métivier, J.-P., Boizumault, P., Loudni, S.: Solving nurse rostering problems using soft global constraints. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 73–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7_9

    Chapter  Google Scholar 

  18. Qu, R., He, F.: A hybrid constraint programming approach for nurse rostering problems. Technical report, School of Computer Science, Nottingham (2008)

    Google Scholar 

  19. Ramsey, F.: A mathematical theory and saving. Econ. J. 38, 543–59 (1928)

    Article  Google Scholar 

  20. Rossi, F., Yorke-Smith, N., Venable, K.: Temporal reasoning with preferences and uncertainty. In: Proceedings of AAAI, vol. 8, pp. 1385–1386 (2003)

    Google Scholar 

  21. Shostak, R.: Deciding linear inequalities by computing loop residues. J. ACM 28(4), 769–779 (1981)

    Article  MathSciNet  Google Scholar 

  22. Traverso, P., Ghallab, M., Nau, D.: Automated Planning: Theory and Practice. Elsevier, New York City (2004, 1997)

    Google Scholar 

  23. van Benthem, J.: Dynamic logic for belief revision. J. Appl. Non-Class. Log. 17(2), 119–155 (2007)

    MathSciNet  MATH  Google Scholar 

  24. van Benthem, J., Gheerbrant, A.: Game: solution, epistemic dynamics, and fixed-point logics. Fundam. Inform. 100, 19–41 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Vidal, T., Fargier, H.: Handling contingency in temporal constraints networks: from consistency to controllabilities. J. Exp. Tech. Artif. Intell. 11(1), 23–45 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystian Jobczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jobczyk, K., Ligȩza, A. (2018). A Multi-Agent Problem in a New Depiction. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91262-2_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91261-5

  • Online ISBN: 978-3-319-91262-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics