Skip to main content

The History, Developments and Opportunities of Stereolithography

  • Chapter
  • First Online:

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 31))

Abstract

Stereolithography (SLA) is an additive manufacturing technique that uses light as the source of energy. SLA 3D printing (3DP) was the first rapid prototyping method developed and perhaps the most popular due to its superior resolution and accuracy. Due to its versatility, SLA has been widely studied for its use in tissue engineering or in dentistry. In the pharmacoprinting field, SLA offers a great potential for fabricating complex drug delivery systems as well as approaching the need to manufacture personalised medicine. Despite this, research in the use of SLA 3DP in the pharmaceutical area is still limited. This chapter presents an overview of the fundamental science behind the photopolymerisation process and the SLA 3DP technologies available. A variety of its biomedical uses are presented. The multiple potential pharmaceutical applications and recent advances are reviewed, along with the advantages and limitations of this rapid prototyping technique for the manufacture of modern medicines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hull, C. W. Apparatus for production of three-dimensional objects by stereolithography. US Patent 4,575,330 1–16 (1986). https://doi.org/10.1145/634067.634234.

  2. Chua CK, Leong KF, An J. Introduction to rapid prototyping of biomaterials. Rapid Prototyp Biomater Princ Appl. 2014:1–15. https://doi.org/10.1533/9780857097217.1.

  3. Kruth JP. Material Incress manufacturing by rapid prototyping techniques. CIRP Ann Manuf Technol. 1991;40:603–14.

    Article  Google Scholar 

  4. Pham D, Gault R. A comparison of rapid prototyping technologies. Int J Mach Tools Manuf. 1998;38:1257–87.

    Article  Google Scholar 

  5. Gardan J. Additive manufacturing technologies: state of the art and trends. Int J Prod Res. 2016;54:3118–32. https://doi.org/10.1080/00207543.2015.1115909.

    Article  Google Scholar 

  6. Vitale A, Cabral JT. Frontal conversion and uniformity in 3D printing by photopolymerisation. Materials (Basel). 2016;9:760–72.

    Article  CAS  Google Scholar 

  7. Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release. 2016;234:41–8.

    Article  CAS  PubMed  Google Scholar 

  8. Goyanes A, Buanz ABM, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157–62.

    Article  CAS  PubMed  Google Scholar 

  9. Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater. 2016;32:54–64.

    Article  CAS  PubMed  Google Scholar 

  10. Koslow T. 11 Best Resin (DLP/SLA) 3D printers in 2017 | All3DP. April 12 2017. Available at: https://all3dp.com/1/best-resin-dlp-sla-3d-printer-kit-stereolithography/#uncia-3d. Accessed 19 Oct 2017.

  11. Systems, 3D. 3D systems: our story. 2013: 1–7. Available at: https://www.3dsystems.com/our-story?smtNoRedir=1&_ga=2.188103467.2074466491.1503585626-2013118968.1503585626. Accessed 24 Aug 2017.

  12. Kinematics Fold | Nervous System | Somerville. Available at: https://n-e-r-v-o-u-s.com/projects/albums/kinematics-fold/content/video-kinematics-fold/. Accessed 28 Mar 2018.

  13. European Patent Office. Charles W. Hull (USA). Available at: https://www.epo.org/learning-events/european-inventor/finalists/2014/hull.html. Accessed 4 Sep 2017.

  14. Markillie P. A third industrial revolution | the economist. De Economist. 2012;1 Available at: http://www.economist.com/node/21552901. Accessed 14 Oct 2017.

  15. Hegde M, et al. 3D printing all-aromatic polyimides using mask-projection stereolithography: processing the nonprocessable. Adv Mater. 2017;29:1701240.

    Article  CAS  Google Scholar 

  16. Shapeways. WEB BANGLE (6MQRWHKA7) by JAXJEWELRY. Available at: https://www.shapeways.com/product/6MQRWHKA7/web-bangle?optionId=43536683&li=marketplace. Accessed 6 Feb 2018.

  17. 3D Architech | Under Armour | US. Available at: https://www.underarmour.com/en-us/3d-architech. Accessed 12 Sept 2017.

  18. 3ders.org – Chinese city of Nanjing gets first 3D printed bridge railings | 3D Printer News & 3D Printing News. Available at: http://www.3ders.org/articles/20170821-chinese-city-of-nanjing-gets-first-3d-printed-bridge-railings.html. Accessed 30 Aug 2017.

  19. Keating SJ, Leland JC, Cai L, Oxman N. Toward site-specific and self-sufficient robotic fabrication on architectural scales. Sci Robot. 2017;2:eaam8986.

    Article  PubMed  Google Scholar 

  20. 3ders.org – Russian spacewalking cosmonauts release world’s first 3D printed satellite from ISS | 3D Printer News & 3D Printing News. Available at: http://www.3ders.org/articles/20170817-russian-spacewalking-cosmonauts-release-worlds-first-3d-printed-satellite-from-iss.html. Accessed 30 Aug 2017.

  21. Jang J, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112:264–74.

    Article  CAS  PubMed  Google Scholar 

  22. Graham AD, et al. High-resolution patterned cellular constructs by droplet-based 3D printing. Sci Rep. 2017;7:7004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Atkins T, Escudier M. A dictionary of mechanical engineering: Oxford University Press; 2013.

    Google Scholar 

  24. Szilvśi-Nagy M, Mátyási G. Analysis of STL files. Math Comput Model. 2003;38:945–60.

    Article  Google Scholar 

  25. Iancu C, Iancu D, Stăncioiu A. From CAD model to 3D print via‘ STL’ file format. Fiability Durab/Fiabilitate si Durab. 2010;1:73–80.

    Google Scholar 

  26. Jin WL, Phung XL, Kim B, Lim G, Cho DW. Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology. J Biomed Mater Res Part B Appl Biomater. 2008;87:1–9.

    Google Scholar 

  27. Tumbleston JR, et al. Continuous liquid interface production of 3D objects. Science. 2015;347:1349–52.

    Article  CAS  PubMed  Google Scholar 

  28. Tehfe M, Louradour F, Lalevée J, Fouassier J-P. Photopolymerization reactions: on the way to a green and sustainable chemistry. Appl Sci. 2013;3:490–514.

    Article  CAS  Google Scholar 

  29. Fouassier JP, Lalevée J. Photoinitiators for polymer synthesis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2012. p. 3–9. https://doi.org/10.1002/9783527648245.ch1.

    Book  Google Scholar 

  30. Raman R, Bashir R. Chapter 6 – Stereolithographic 3D bioprinting for biomedical applications. In: Essentials of 3D biofabrication and translation. San Diego: Elsevier; 2015. https://doi.org/10.1016/B978-0-12-800972-7.00006-2.

    Chapter  Google Scholar 

  31. Bailey RA, et al. Chemistry of the environment. San Diego: Elsevier; 2002. p. 73–90. https://doi.org/10.1016/B978-012073461-0/50051-X.

    Book  Google Scholar 

  32. Fouassier JP, Lalevée J. Photoinitiators for polymer synthesis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2012. p. 11–20. https://doi.org/10.1002/9783527648245.ch2.

    Book  Google Scholar 

  33. Milonni PW, Eberly JH. Laser physics. New York: Wiley; 2010. p. 1–15. https://doi.org/10.1002/9780470409718.ch1.

    Book  Google Scholar 

  34. Schnabel W. Polymers and light – fundamentals and technical applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2007. https://doi.org/10.1002/9783527611027.

    Book  Google Scholar 

  35. Fouassier JP, Allonas X, Laleve J, Dietlin C. Photochemistry and photophysics of polymer materials. Hoboken: Wiley; 2010. p. 351–419. https://doi.org/10.1002/9780470594179.ch10.

    Book  Google Scholar 

  36. Ravve A. Light-associated reactions of synthetic polymers. New York: Springer; 2006. p. 23–122. https://doi.org/10.1007/0-387-36414-5_2.

    Book  Google Scholar 

  37. Colley CS, et al. Probing the reactivity of photoinitiators for free radical polymerization: time-resolved infrared spectroscopic study of benzoyl radicals. J Am Chem Soc. 2002;124:14952–8.

    Article  CAS  PubMed  Google Scholar 

  38. Tseng S-J, et al. Controlled hydrogel photopolymerization inside live systems by X-ray irradiation. Soft Matter. 2012;8:1420–7. https://doi.org/10.1039/c1sm06682j.

    Article  CAS  Google Scholar 

  39. Zhong C, Wu J, Reinhart-King CA, Chu CC. Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan-polyethylene glycol diacrylate hybrid hydrogels. Acta Biomater. 2010;6:3908–18.

    Article  CAS  PubMed  Google Scholar 

  40. Melchels FPW, Feijen J, Grijpma DW. A poly(d,l-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials. 2009;30:3801–9. https://doi.org/10.1016/j.biomaterials.2009.03.055.

    Article  PubMed  CAS  Google Scholar 

  41. Nuttelman CR, Henry SM, Anseth KS. Synthesis and characterization of photocrosslinkable, degradable poly(vinyl alcohol)-based tissue engineering scaffolds. Biomaterials. 2002;23:3617–26.

    Article  CAS  PubMed  Google Scholar 

  42. Leach JB, Bivens KA, Patrick CW, Schmidt CE. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng. 2003;82:578–89. https://doi.org/10.1002/bit.10605.

    Article  CAS  Google Scholar 

  43. Torres-Lugo M, Peppas NA. Molecular design and in vitro studies of novel pH-sensitive hydrogels for the oral delivery of calcitonin. Macromolecules. 1999;32:6646–51.

    Article  CAS  Google Scholar 

  44. Cevik O, Gidon D, Kizilel S. Visible-light-induced synthesis of pH-responsive composite hydrogels for controlled delivery of the anticonvulsant drug pregabalin. Acta Biomater. 2015;11:151–61.

    Article  CAS  PubMed  Google Scholar 

  45. Fairbanks BD, Schwartz MP, Bowman CN, Anseth KS. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2, 4, 6- trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials. 2009;30:6702–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nguyen AK, et al. Two-photon polymerization of polyethylene glycol diacrylate scaffolds with riboflavin and triethanolamine used as a water-soluble photoinitiator. Regen Med. 2013;8:725–38.

    Article  CAS  PubMed  Google Scholar 

  47. Kang H-W, Cho D-W. Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity. Tissue Eng Part C Methods. 2012;18:719–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ahmad I, et al. Photoinitiated polymerization of 2-hydroxyethyl methacrylate by riboflavin/triethanolamine in aqueous solution: a kinetic study. ISRN Pharm. 2013;2013:958712.

    PubMed  PubMed Central  Google Scholar 

  49. Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002;23:4307–14.

    Article  CAS  PubMed  Google Scholar 

  50. Martinez PR, Goyanes A, Basit AW, Gaisford S. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm. 2017;532:313–7. https://doi.org/10.1016/j.ijpharm.2017.09.003.

    Article  PubMed  CAS  Google Scholar 

  51. Kim S, Chu C-C. Visible light induced dextran-methacrylate hydrogel formation using (−)-riboflavin vitamin B2 as a photoinitiator and L-arginine as a co-initiator. Fibers Polym. 2009;10:14–20.

    Article  CAS  Google Scholar 

  52. Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials. 2005;26:1211–8.

    Article  CAS  PubMed  Google Scholar 

  53. Orellana B, Rufs AM, Encinas MV, Previtali CM, Bertolotti S. The photoinitiation mechanism of vinyl polymerization by riboflavin/triethanolamine in aqueous medium. Macromolecules. 1999;32:6570–3.

    Article  CAS  Google Scholar 

  54. Bertolotti SG, Previtali CM, Rufs AM, Encinas MV. Riboflavin/triethanolamine as photoinitiator system of vinyl polymerization. A mechanistic study by laser flash photolysis. Macromolecules. 1999;32:2920–4.

    Article  CAS  Google Scholar 

  55. Encinas MV, Rufs AM, Bertolotti S, Previtali CM. Free radical polymerization photoinitiated by riboflavin/amines. Effect of the amine structure. Macromolecules. 2001:2845–7. https://doi.org/10.1021/ma001649r.

  56. Grund S, Bauer M, Fischer D. Polymers in drug delivery-state of the art and future trends. Adv Eng Mater. 2011;13:B61–87.

    Article  CAS  Google Scholar 

  57. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Oskui SM, et al. Assessing and reducing the toxicity of 3D-printed parts. Environ Sci Technol Lett. 2016;3:1–6.

    Article  CAS  Google Scholar 

  59. Wang N, et al. Synthesis of degradable functional poly(ethylene glycol) analogs as versatile drug delivery carriers. Macromol Biosci. 2007;7:1187–98.

    Article  CAS  PubMed  Google Scholar 

  60. Yu J, et al. In situ covalently cross-linked PEG hydrogel for ocular drug delivery applications. Int J Pharm. 2014;470:151–7.

    Article  CAS  PubMed  Google Scholar 

  61. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24:4337–51.

    Article  CAS  PubMed  Google Scholar 

  62. Cruise GM, Scharp DS, Hubbell JA. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials. 1998;19:1287–94.

    Article  CAS  PubMed  Google Scholar 

  63. Leach JB, Schmidt CE. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials. 2005;26:125–35.

    Article  CAS  PubMed  Google Scholar 

  64. Vehse M, Petersen S, Sternberg K, Schmitz KP, Seitz H. Drug delivery from poly(ethylene glycol) diacrylate scaffolds produced by DLC based micro-stereolithography. Macromol Symp. 2014;346:43–7.

    Article  CAS  Google Scholar 

  65. Mellott MB, Searcy K, Pishko MV. Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization. Biomaterials. 2001;22:929–41.

    Article  CAS  PubMed  Google Scholar 

  66. Arcaute K, Mann BK, Wicker RB. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng. 2006;34:1429–41.

    Article  PubMed  Google Scholar 

  67. Dhariwala B, Hunt E, Boland T. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng. 2004;10:1316–22.

    Article  CAS  PubMed  Google Scholar 

  68. Gou M, et al. Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nat Commun. 2014;5:1–9.

    Article  CAS  Google Scholar 

  69. Mapili G, Lu Y, Chen S, Roy K. Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds. J Biomed Mater Res Part B Appl Biomater. 2005;75:414–24.

    Article  CAS  Google Scholar 

  70. Placone JK, et al. Development and characterization of a 3D printed, keratin-based hydrogel. Ann Biomed Eng. 2017;45:237–48.

    Article  PubMed  Google Scholar 

  71. Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503:207–12.

    Article  CAS  PubMed  Google Scholar 

  72. Food and Drug Administration. Department of health & human services. Approved Premarket Notification: Dentca Denture Base II. 510(k) number K160244. 2017. Available at: https://www.accessdata.fda.gov/cdrh_docs/pdf16/K162044.pdf. Accesed 24 Aug 2017.

  73. DENTCA. DENTCA 3D Printed Denture | Dentca. (2016). Available at: https://www.dentca.com/products/dentca-3d. Accessed 22 Aug 2017.

  74. Food and Drug Administration. Department of health & human services. Approved Premarket Notification: Dentca denture base. 510(k) Number K143033. 2015. Available at: https://www.accessdata.fda.gov/cdrh_docs/pdf14/K143033.pdf. Accessed 22 Aug 2017.

  75. Food and Drug Administration. Department of health & human services. Approved Premarket Notification: NextDent™ Denture/E-Denture. 510(k) Number K162572. 2017. Available at: https://www.accessdata.fda.gov/cdrh_docs/pdf16/K162572.pdf. Accesed 24 Aug 2017.

  76. Sharma R. The 3D printing revolution you have not heard about. In: Forbes.2013. Available at: https://www.forbes.com/sites/rakeshsharma/2013/07/08/the-3d-printing-revolution-you-have-not-heard-about/#33bacc131a6b. Accessed 1 Dec 2017.

  77. ENVISIONTEC INC. 3D Printed Hearing Aid Shells, Molds, Inner-Ear Devices | EnvisionTEC. Available at: https://envisiontec.com/3d-printing-industries/medical/hearing-aid/. Accessed 1 Dec 2017.

  78. Di Prima M, et al. Additively manufactured medical products – the FDA perspective. 3D Print Med. 2015;2:1.

    Article  Google Scholar 

  79. Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci. 2018;39(5):440–51.

    Article  CAS  PubMed  Google Scholar 

  80. Goole J, Amighi K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499(1–2):376–94.

    Article  CAS  PubMed  Google Scholar 

  81. Awad A, Trenfield SJ, Gaisford S, Basit AW. 3D printed medicines: A new branch of digital healthcare. Int J Pharm. 2018;548(1):586–96.

    Google Scholar 

  82. Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018; https://doi.org/10.1016/j.drudis.2018.05.025.

  83. Larush L, Kaner I, Fluksman A, Tamsut A, Pawar AA. 3D printing of responsive hydrogels for drug-delivery systems. J 3D Print Med. 2017;1:219–29.

    Article  CAS  Google Scholar 

  84. Kwon IK, Matsuda T. Photo-polymerized microarchitectural constructs prepared by microstereolithography (μSL) using liquid acrylate-end-capped trimethylene carbonate-based prepolymers. Biomaterials. 2005;26:1675–84.

    Article  CAS  PubMed  Google Scholar 

  85. Martinez PR, Goyanes A, Basit AW, Gaisford S. Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D printed tablets. AAPS PharmSciTech. 2018; https://doi.org/10.1208/s12249-018-1075-3.

  86. Miller PR, et al. Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing. Biomicrofluidics. 2011;5:13415.

    Article  CAS  PubMed  Google Scholar 

  87. Matsuda T, Mizutani M. Liquid acrylate-endcapped biodegradable poly(epsilon-caprolactone-co-trimethylene carbonate). II. Computer-aided stereolithographic microarchitectural surface photoconstructs. J Biomed Mater Res. 2002;62:395–403.

    Article  CAS  PubMed  Google Scholar 

  88. Popov VK, et al. Laser stereolithography and supercritical fluid processing for custom-designed implant fabrication. J Mater Sci Mater Med. 2004;15:123–8.

    Article  CAS  PubMed  Google Scholar 

  89. Inoue Y, Ikuta K. Detoxification of the photoeurable polymer by heat treatment for microstereolithography. Procedia CIRP. 2013;5:115–8.

    Article  Google Scholar 

  90. Mazzoccoli JP, Feke DL, Baskaran H, Pintauro PN. Mechanical and cell viability properties of crosslinked low- and high-molecular weight poly(ethylene glycol) diacrylate blends. J Biomed Mater Res A. 2010;93:558–66.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Robles Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Robles Martinez, P., Basit, A.W., Gaisford, S. (2018). The History, Developments and Opportunities of Stereolithography. In: Basit, A., Gaisford, S. (eds) 3D Printing of Pharmaceuticals. AAPS Advances in the Pharmaceutical Sciences Series, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-90755-0_4

Download citation

Publish with us

Policies and ethics