Skip to main content

Chrysanthemum

  • Chapter
  • First Online:

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 11))

Abstract

Cultivated chrysanthemums are complex hybrids with different backgrounds. They originate from multiple crosses between varying wild species, occurring in East Asia. Inheritance is hexasomic according to SNP analysis which stimulates variability. The first protomums emerged some 1600 years ago in the primary gene center, situated in China. They have spread into other Asian countries in the following centuries, only from 1789 on into Western countries. After rose, chrysanthemum occupies the second place in flower trade.

Wild species represent precious resources for breeding; many of them are discussed in this article. Linnaeus possessed as first in Europe, two Herbarium specimens of C. indicum. In 1999 the International Botanical Congress sanctioned the proposal to conserve the generic name Chrysanthemum L. for the group of cultivated chrysanthemums, with Chrysanthemum indicum L. of the Linnaean Herbarium, as lectotype. The combination Chrysanthemum and the specific epithet morifolium for cultivated types was proposed as first by De Ramatuelle in 1792 and is according to the rules of the International Code of Nomenclature of algae, fungi, and plants (ICN) the preferred legitimate choice. Several wild Chrysanthemum species are resources for resistances to pests and fungi and special chemical compounds and tolerances to cold, warmth, salt, and drought. Various successful experiments have been performed and are discussed. Some species however are also host plants for white rust.

Techniques for breeding and selection are discussed, including the development of DNA markers associated with traits of interest, like the use of SNPs and CRISPR/Cas9. Ultimately, this will lead to integrated linkage maps, required to identify loci associated with a trait of interest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd El-Twab MH, Kondo K (2001a) Molecular cytogenetic identification of the parental genomes in the intergeneric hybrid between Leucanthemella linearis and Nipponanthemum nipponicum during meiosis and mitosis. Caryologia 54:109–114

    Article  Google Scholar 

  • Abd El-Twab MH, Kondo K (2001b) Genome territories of Dendranthema horaimontana in mitotic nuclei of F1 hybrid between Dendranthema horaimontana and Tanacetum parthenium. Chromosome Sci 5:63–71

    Google Scholar 

  • Abd El-Twab MH, Kondo K (2006) Fluorescence in situ hybridization and genomic in situ hybridization to identify the parental genomes in the intergeneric hybrid between Chrysanthemum japonicum and Nipponanthemum nipponicum. Chromosome Bot 1:7–11

    Article  Google Scholar 

  • Abd El-Twab MH, Kondo K (2007a) FISH physical mapping of 5 s rDNA and telomere sequence repeats identified a peculiar chromosome mapping and mutation in Leuchanthemella linearis and Nipponanthemum nipponicum in Chrysanthemum sensu lato. Chromosome Bot 2:11–17

    Article  Google Scholar 

  • Abd El-Twab MH, Kondo K (2007b) Identification of parental chromosomes, intra-chromosomal changes and relationship of the artificial intergeneric hybrid between Chrysanthemum horaimontanum and Tanacetum vulgare by single color and simultaneous bicolor of FISH and GISH. Chromosome Bot 2:113–119

    Article  Google Scholar 

  • AIPH (2014) International statistics flowers and plants 2014, Reading, UK

    Google Scholar 

  • Anderson NO (2006) Chrysanthemum. Dendranthema grandiflora Tzvelev. In: Anderson NO (ed) Flower breeding and genetics: issues, challenges, and opportunities for the 21st century. Springer, Dordrecht, pp 389–437

    Chapter  Google Scholar 

  • Anderson NO (ed) (2007) Flower breeding and genetics. Springer, Dordrecht. With chapter on chrysanthemum by Anderson

    Google Scholar 

  • Anderson NO, Ascher PD (2001) Selection of day-neutral, heat-delay-insensitive Dendranthema x grandiflora genotypes. J Am Soc Hortic Sci 126(6):710–721

    Google Scholar 

  • Anderson NO, Ascher PD, Gesick E (2008) Winter-hardy Mammoth series garden chrysanthemums ‘Red Daisy’, ‘White Daisy’, and ‘Coral Daisy’ sporting a shrub plant habit. Hortscience 43(3):648–654

    Google Scholar 

  • Bino RJ, van Tuyl JM, de Vries JN (1990) Flow cytometric determination of relative nuclear DNA contents in bicellulate and tricellulate pollen. Ann Bot 65:3–8

    Article  CAS  Google Scholar 

  • Chen J-Y (2004) Ornamental plants. Webarticle on bio-diversity and resources of National CBD and Biosafety Office, China

    Google Scholar 

  • Chen F, Chen P, Li H (1996) Genome analysis and their phylogenetic relationships of several wild species of Dendranthema in China. Acta Hortic Sin 23:67–72

    Google Scholar 

  • Chen J-Y, Wang CY, Zhao HE, Zhou J (2012) The origin of garden Chrysanthemum, Beijing

    Google Scholar 

  • Cheng X, Chen S, Chen F, Fang W, She L (2009) Interspecific hybrids between Dendranthema morifolium (Ramat.) Kitamura and D. nankingense (Nakai) Tzvel. achieved using ovary rescue and their cold tolerance characteristics. Euphytica 172:101–108

    Article  Google Scholar 

  • Chong X, Zhang F, Wu Y, Yang X, Zhao N, Wang H, Guan Z, Fang W, Chen F (2016) A SNP-enabled assessment of genetic diversity, evolutionary relationships and the identification of candidate genes in Chrysanthemum. Genome Biol Evol 8(12):3661–3671

    PubMed  PubMed Central  Google Scholar 

  • Courtney-Gutterson N, Napoli C, Lemieux C, Morgan A, Firoozabady E, Robinson KE (1994) Modification of flower color in florist’s chrysanthemum: production of a white-flowering variety through molecular genetics. Biotechnology 12(3):268–271

    Article  PubMed  CAS  Google Scholar 

  • Cumming A (1939) Hardy chrysanthemums. Whittlesey House, New York

    Google Scholar 

  • Dai SL, Zhong Y, Zhang XY (1995) Study on numerical taxonomy of some Chinese species of Dendranthema (DC) Des Moul. J Beijing For Univ 17(4):9-14–9-15

    Google Scholar 

  • Dai SL, Chen J-Y, Li W-B (1998) Application of RAPD analysis in the study on the origin of Chinese cultivated chrysanthemum. Acta Bot Sin 11:1053–1059

    Google Scholar 

  • Dai SL, Wang WK, Xu YX (2005) Phylogenetic relationship of Dendranthema (DC.) Des Moul. revealed by fluorescent in situ hybridization. J Integr Plant Biol 7:783–e791

    Article  Google Scholar 

  • De Backer M (2012) Characterization and detection of Puccinia horiana on chrysanthemum for resistance breeding and sustainable control. Thesis, Ghent University

    Google Scholar 

  • De Backer M, Alaei H, Van Bockstaele E, Roldan-Ruiz I, Van der Lee T, Maes M, Heungens K (2011) Identification and characterization of pathotypes in Puccinia horiana, a rust pathogen of Chrysanthemum x morifolium. Eur J Plant Pathol 130:325–338

    Article  Google Scholar 

  • De Backer M, Bonants P, Pedley K, Maes M, Roldán-Ruiz I, Van Bockstaele E, Van der Lee T, Heungens K (2013) Genetic relationships in an international collection of Puccinia horiana isolates based on newly identified molecular markers and demonstration of recombination. Phytopathology 103(11):1169–1179

    Article  PubMed  CAS  Google Scholar 

  • De Jager CM, Butôt RPT, Klinkhamer PGL, van der Meyden E (1996) The role of primary and secondary metabolites in chrysanthemum resistance to Franklienella occidentalis. J Chem Ecol 22:1987–1999

    Article  PubMed  Google Scholar 

  • De Jong J (1984) Genetic analysis in Chrysanthemum morifolium. I. Flowering time and flower number at low and optimum temperature. Euphytica 33:455–463

    Article  Google Scholar 

  • De Jong J, Rademaker W (1986) The reaction of Chrysanthemum cultivars to Puccinia horiana and the inheritance of resistance. Euphytica 35:945–952

    Article  Google Scholar 

  • De Jong J, Rademaker W (1989) Interspecific hybrids between two Chrysanthemum species. Hortscience 24(2):370–372

    Google Scholar 

  • De Jong J, Rademaker W (1991) Life history studies of the leafminer Liriomyza trifolii on susceptible and resistent cultivars of Dendranthema grandiflora. Euphytica 56:47–53

    Article  Google Scholar 

  • De Jong J, van de Vrie M (1987) Components of resistance to Liriomyza trifolii in Chrysanthemum morifolium and Chrysanthemum pacificum. Euphytica 36:719–724

    Article  Google Scholar 

  • Deng Y, Chen S, Chen F, Cheng X, Zhang F (2010a) The embryo rescue derived intergeneric hybrid between chrysanthemum and Ajania przewalskii shows enhanced cold tolerance. Plant Cell Rep 30(12):2177–2186

    Article  CAS  Google Scholar 

  • Deng Y, Chen S, Lu A, Chen F, Jang F, Guan Z, Teng N (2010b) Production and characterisation of the intergeneric hybrids between Chrysanthemum morifolium and Artemisia vulgaris exhibiting enhanced resistance to Chrysanthemum aphid (Macrosiphoniella sanbourni). Planta 231:693–703

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Chen S, Chen F, Cheng X, Zhang F (2011) The embryo rescue derived intergeneric hybrid between chrysanthemum and Ajania przewalskii shows enhanced cold tolerance. Plant Cell Rep 30:2177–2186

    Article  PubMed  CAS  Google Scholar 

  • Deng YM, Jiang JF, Chen S, Teng N, Song A, Guan Z, Fang W, Chen F (2012) Combination of multiple resistance traits from wild relative species in Chrysanthemum via trigeneric hybridization. PLoS One 7(8):e44337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Douzono M, Ikeda H (1998) All year round productivity of F1 and BC1 progenies between Dendranthema grandiflorum and D. shiwogiku. Acta Hortic 454:303–310

    Article  Google Scholar 

  • Dowrick GJ (1952) The chromosomes of Chrysanthemum, I: the species. Heredity 6:365–375

    Article  Google Scholar 

  • Dowrick GJ (1953) The chromosomes of Chrysanthemum, II:garden varieties. Heredity 7:59–72

    Article  Google Scholar 

  • Dowrick GJ, El-Bayoumi A (1966) The induction of mutations in Chrysanthemum using X- and gamma radiation. Euphytica 15:204–210

    Article  CAS  Google Scholar 

  • Drewlow LW, Ascher PD, Widmer RE (1973) Genetic studies of self incompatibility in the garden chrysanthemum, Chrysanthemum morifolium Ramat. Theor Appl Genet 43:1–5

    Article  PubMed  CAS  Google Scholar 

  • Endo M, Inada I (1992) On the karyotypes of garden chrysanthemums, Chrysanthemum morifolium Ramat. J Jpn Soc Hortic Sci 61:413–420

    Article  Google Scholar 

  • Fan Q, Song A, Jiang J, Zhang T, Sun H, Wang Y et al (2016) CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes. PLoS One 11:e015057210.1371

    Google Scholar 

  • Fournier J (1910) Les voyages de P. Blancard. Bulletin de la Société de Géographie de Marseille:72–88, 205–225

    Google Scholar 

  • Fukai S (2003) Dendranthema species as Chrysanthemum genetic resources. Acta Hortic 620:223–230

    Article  Google Scholar 

  • Fukai S, Zhang W, Goi M (2000) Cross compatibility between Chrysanthemum (Dendranthema grandiflorum) and Dendranthema species native to Japan. Acta Hortic 508:337–340

    Article  Google Scholar 

  • Furuta H, Shinoyama H, Nomura Y, Maeda M, Makara K (2004) Production of intergeneric somatic hybrids of chrysanthemum (Dendranthema grandiflorum Ramat.) and wormwood (Artemisia sieversiana J. F. Ehrh. ex. Willd) with rust ( Puccinia horiana Henning) resistance by electrofusion of protoplasts. Plant Sci 166(3):695–702

    Article  CAS  Google Scholar 

  • Genders R (1971) Pelham’s new gardening annual : new flowers, new vegetables, new ideas, The Gardening Book Club, Pelham, London

    Google Scholar 

  • Greger H (1977) Anthemideae, critical review. In: Heywood VH, Harborne JB (eds) The biology and chemistry of the compositae. Academic Press, London

    Google Scholar 

  • Gupta RC, Bala S, Sharma S, Kapoor M (2013) Cytomorphological studies in some species of Chrysanthemum L. (Asteraceae). Chromosome Bot 8(3):69–74

    Article  Google Scholar 

  • Hattori K (1992) Inheritance of Anthocyanin Pigmentation in Flower Color of Chrysanthemum. Japanese J Genet 67:253–258

    Article  CAS  Google Scholar 

  • Hoffman MHA (2005) List of names of perennials. Applied Plant Research, Netherlands

    Google Scholar 

  • Hong G, Wu X, Liu Y, Xie F (2015) Intergeneric hybridization between Hippolytia kaschgarica (Krascheninnikov) Poljakov and Nipponanthemum nipponicum (Franch. ex Maxim.) Kitam. Genet Resour Crop Evol 62(2):255–263

    Article  CAS  Google Scholar 

  • Huang KC (1999) The pharmacology of Chinese herbs, second edn. CRC Press LLC, Florida

    Google Scholar 

  • Huang D, Li X, Sun M, Zhang T, Pan H, Cheng T, Wang J, Zhan Q (2016) Identification and characterization of CYC-like genes in regulation of ray floret development in Chrysanthemum morifolium. Front Plant Sci 7:1633

    PubMed  PubMed Central  Google Scholar 

  • Humphries CJ (1993) Lectotypification of Chrysanthemum indicum. In: Jarvis CE, Barrie FR, Allan DM, Reveal JL (eds) A list of Linnaean generic names and their types, Regnum Vegetabile, Koeltz scientific books, Oberreifenberg, Germany vol 127, p 33

    Google Scholar 

  • Ichikawa S, Yamakawa KY, Sekiguchi F, Tatsuno T (1970) Variation in somatic chromosome number found in radiation-induced mutants of Chrysanthemum morifolium Hemsl. cv. Yellow Delaware and Delaware. Radiat Bot 10:557–562

    Article  Google Scholar 

  • Ito T, Tada S, Sato S (1990) Aroma constituents of edible chrysanthemum. J Fac Agric Iwate Univ 20:35–42

    CAS  Google Scholar 

  • Jaffar AM, Song A, Faheem M, Chen S, Jiang J, Liu C et al (2016) Involvement of CmWRKY10 in drought tolerance of chrysanthemum through the ABA-signaling pathway. Int J Mol Sci 17(5):693

    Article  PubMed Central  CAS  Google Scholar 

  • Jarvis CE, Barrie FR, Allan DM, Reveal JL (1993) A list of Linnaean generic names and their types. Regnum Veg 127:1–100

    Google Scholar 

  • Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15:648–657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kadereit JW, Jeffrey C (2007) The families and genera of vascular plants. In: Kubitzki K (ed) Flowering Plants Eudicots, Asterales, vol VIII. Springer, Berlin/Heidelberg/New York

    Chapter  Google Scholar 

  • Kielkiewicz M, van de Vrie M (1990) Within-leaf differences in nutritive value and defence mechanism in chrysanthemum to the two-spotted spider mite (Tetranychus urticae). Exp Appl Acarol 10:33–43

    Article  Google Scholar 

  • Kim JS, Oginuma K, Tobe H (2009) Syncyte formation in the microsporangium of Chrysanthemum (Asteraceae):a pathway to infraspecific polyploidy. J Plant Res 122:439–444

    Article  PubMed  Google Scholar 

  • Kishi-Kaboshi M, Aida R, Sasaki K (2017) Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant Cell Physiol 58(1):216–226

    PubMed  CAS  Google Scholar 

  • Kitamura S (1937) Compositae Japonicae. Memoirs of the College of Science, Kyoto Imperial University, Series B, Vol. XV, No. 3, Art 9:1–350

    Google Scholar 

  • Klie M, Menz I, Linde M, Debener T (2013) Lack of structure in the gene pool of the highly polyploid ornamental chrysanthemum. Mol Breed 32:339–348

    Article  Google Scholar 

  • Klie M, Schie S, Linde M, Debener T (2014) The type of ploidy of chrysanthemum is not black or white:a comparison of a molecular approach to published cytological methods. Front Plant Sci 5, 479:1–8

    Google Scholar 

  • Klie M, Menz I, Linde M, Debener T (2016) Strigolactone pathway genes and plant architecture: association analysis and QTL detection for horticultural traits in chrysanthemum. Mol Gen Genomics 291:957–969

    Article  CAS  Google Scholar 

  • Kondo K, Tanaka R, Hizume M, Kokubugata G, Hong D, Ge S, Yang Q (1998) Cytogenetic studies on wild Chrysanthemum sensu lato in China VI. Karyomorphological characters of five species of Ajania and each one species of Brachanthemum, Dendranthema, Elachanthemum, Phaeostigma and Tanacetum in highlands of Gansu, Qinghai and Sichuan Province. J Jpn Bot 73:128–136

    Google Scholar 

  • Kondo K, Abd El-Twab MH, Tanaka R (1999) Fluorescence in situ hybridization identifies reciprocal translocation of somatic chromosomes and origin of extra chromosome by an artificial, intergeneric hybrid between Chrysanthemum japonica × Tanacetum vulgare. Chromosome Sci 3:15–19

    Google Scholar 

  • Kondo K, Abd El-Twab MH, Idesawa R, Kimura S, Tanaka R (2003) Genome phylogenetics in Chrysanthemum sensu lato. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, Phanerogams, vol 1A. Science Publisher, Plymouth, pp 117–200

    Google Scholar 

  • Kos SP, Klinkhamer PGL, Leiss KA (2014) Cross-resistance of chrysanthemum to western flower thrips, celery leafminer, and two-spotted spider mite. Entomol Exp Appl 151(3):198–208

    Article  Google Scholar 

  • Langton FA (1980) Chimerical structure and carotenoid inheritance in Chrysanthemum morifolium Ramat. Euphytica 29:807–812

    Article  Google Scholar 

  • Langton FA (1989) Inheritance in Chrysanthemum morifolium Ramat. Heredity 62:419–423

    Article  Google Scholar 

  • Lawal OA, Ogunwande IA, Olorunloba OF, Opoku AR (2014) The essential oils of Chrysanthemum morifolium Ramat. from Nigeria. Am J Essent Oil Nat Prod 2(1):63–66

    Google Scholar 

  • Leiss K, Maltese F, Choi YH, Verpoorte R, Klinkhamer PGL (2009) Identification of Chlorogenic acid as a resistance factor for Thrips in Chrysanthemum. Plant Physiol 150:1567–1575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Teng N, Chen F, Chen S, Sun C, Fang W (2009) Reproductive characteristics of Opisthopappus taihangensis (Y. Ling) C. Shih, an endangered Asteraceae species endemic to China. Sci Hortic 121:474–479

    Article  Google Scholar 

  • Li H, Chen S, Song A, Wang H, Fang W, Guan Z, Jiang J, Chen F (2014) RNA-Seq. derived identification of differential transcription in the chrysanthemum leaf following inoculation with Alternaria tenuissima. BMC Genomics 15:9–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Zhang F, Chen S, Jiang J, Wang H, Su J, Fang W, Guan Z, Chen F (2016) Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.). Mol Gen Genomics 291(3):1117–1125

    Article  CAS  Google Scholar 

  • Liang J, Zhao L, Challis R, Leyser O (2010) Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum). J Exp Bot 61:3069–3078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ling R, Shih Z (1983) Anthemideae, Flora Republicae Popularis Sinicae, vol 76 (1). Science Press, Beijing:73–74, 97–98

    Google Scholar 

  • Liu H, Sun M, Du D, Pan H, Cheng T, Wang J, Zhang Q, Gao Y (2016) Whole-transcriptome analysis of differentially expressed genes in the ray florets and disc florets of Chrysanthemum morifolium. BMC Genomics 17:389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma YP, Chen MM, Wei JX, Zhao L, Liu PL, Dai SL, Wen J (2016) Origin of Chrysanthemum cultivars, evidence from nuclear low-copy LFY gene sequences. Biochem Syst Ecol 65:129–136

    Article  CAS  Google Scholar 

  • Miyake K, Imai Y (1935) A chimerical strain with variegated flowers in Chrysanthemum sinense. Zeitschr f ind Abst- u Vererbgsl 68:300–302

    Google Scholar 

  • Morineau C, Bellec Y, Tellier F, Gissot L, Kelemen Z, Nogué F, Faure J-D (2017) Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol J 15:729–739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Needham J (1986) Science and civilisation in China. Botany, Vol. VI.1. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Nicolson DH (1999) Report of the General Committee:8. Proposal 1172 of 1998 accepted to conserve Chrysanthemum with a conserved type. This proposal by Trehane (1995) was accepted by the Committee for Spermatophyta in 1998, according to report 46 by Brummitt in Taxon 47:443–444

    Google Scholar 

  • Oberprieler C, Vogt R, Watson LE (2006) Tribe Anthemideae Cass. In: Kadereit JW, Jeffrey C (eds) The families and genera of vascular plants 8. Springer, Berlin, pp 342–374

    Google Scholar 

  • Ohashi H, Yonekura K (2004) New combinations in Chrysanthemum (Compositae-anthemideae) of Asia with a list of Japanese species. J Jpn Bot 79:186–195

    Google Scholar 

  • Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol 142:1193–1201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohtsuka H, Inaba Z (2008) Intergeneric hybridization of marguerite (Argyranthemum frutescens) with annual chrysanthemum (Glebionis carinatum) and crown daisy (G. coronaria) using ovule culture. Plant Biotechnol 25:535–539

    Article  Google Scholar 

  • Park NY, Kwon JH (1997) Chemical composition of petals of Chrysanthemum spp. J Food Sci Nutr 2(4):304–309

    CAS  Google Scholar 

  • Park SK, Arens P, Esselink D, Lim JH, Shin HK (2015) Analysis of inheritance mode in chrysanthemum using EST-derived SSR markers. Sci Hortic 192:80–88

    Article  CAS  Google Scholar 

  • Punithalingam E (1968) Puccinia horiana. C MI Descriptions of Pathogenic Fungi and Bacteria No. 176. CAB International, Wallingford, UK

    Google Scholar 

  • Roxas NJL, Tashiro Y, Miyazaki S, Isshiki S, Takeshita A (1995) Meiosis and pollen fertility in Higo chrysanthemum (Dendranthema × grandiflorum (Ramat.) Kitam). J Jpn Soc Hortic Sci 64(1):161–168

    Article  Google Scholar 

  • Sasaki K, Mitsuda N, Nashima K, Kishimoto K, Katayose Y, Kanamori H, Ohmiya A (2017) Generation of expressed sequence tags for discovery of genes responsible for floral traits of Chrysanthemum morifolium by next-generation sequencing technology. BMC Genomics 18:683–696

    Article  PubMed  PubMed Central  Google Scholar 

  • Shibata M, Amano M, Kawata J, Uda M (1988a) Breeding process and characteristics of Summer Queen, a spray chrysanthemum for summer production. Bull Nat Res Inst Veg Orn Plants Tea Ser A 2:245–255

    Google Scholar 

  • Shibata M, Kawata J, Amano M, Kameno T, Yamagashi M, Toyoda T, Yamaguchi T, Okimura M, Uda M (1988b) Breeding process and characteristics of Moonlight, an interspecific hybrid between Chrysanthemum morifolium and C. pacificum. Bull Nat Res Inst Veg Orn Plants Tea Ser A 2:257–277

    Google Scholar 

  • Shimotomai N (1933) Zur karyogenetik der Gattung Chrysanthemum. J.Sci. (Hiroshima Univ.) Ser.B. Div. 2. 2:1–98

    Google Scholar 

  • Shunying Z, Yang Y, Huaidong Y, Yue Y, Guolin Z (2005) Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum. J Ethnopharmacol 96(1–2):151–158

    Article  PubMed  CAS  Google Scholar 

  • Spaargaren JJ (2001) Supplemental lighting for greenhouse crops. Hortilux Schréder, P.L. Light Systems

    Google Scholar 

  • Spaargaren JJ (2015) Origin and spreading of the cultivated chrysanthemum, Aalsmeer. ISBN:978-90-803929-2-2

    Google Scholar 

  • Storer JR, Elmore JS, van Embden HF (1993) Airborne volatiles from the foliage of three cultivars of autumn flowering Chrysanthemum. Phytochemistry 34(6):1489–1492

    Article  CAS  Google Scholar 

  • Su J, Zhang F, Li P, Guan Z, Fang W, Chen F (2016) Genetic variation and association mapping of waterlogging tolerance in chrysanthemum. Planta 244:1241–1252

    Article  PubMed  CAS  Google Scholar 

  • Sun CQ, Chen FD, Fang WM, Liu ZL, Teng NJ (2010) Advances in research on distant hybridization of Chrysanthemum. Sci Agric Sin 43(12):2508–2517

    Google Scholar 

  • Sun H, Zhang F, Chen S, Guan Z, Jiang J, Fang W, Chen F (2015) Effects of aphid herbivory on volatile organic compounds of Artemisia annua and Chrysanthemum morifolium. Biochem Syst Ecol 60:225–233

    Article  CAS  Google Scholar 

  • Tanaka R (1959a) On the speciation and karyotype in diploid and tetraploid species of Chrysanthemum. II. Karyotype in Chrysanthemum makinoi (2n=18). J Sc Hiroshima Univ Series B Div 2 (Botany) 9:17–30

    Google Scholar 

  • Tanaka R (1959b) On the speciation and karyotype in diploid and tetraploid species of Chrysanthemum. IV. Karyotype in Chrysanthemum wakasaense (2n=36). J Sc Hiroshima Univ Series B Div 2 (Botany) 9:41–57

    Google Scholar 

  • Tanaka R, Shimotomai N (1961) Cytogenetic studies on the F1 hybrid of Chrysanthemum lineare × Ch. Nipponicum. Zeitschrift fűr Vererbungslehre 92:190–196

    Google Scholar 

  • Tanaka R, Shimotomai N (1968) A cytogenetic study on the F1 hybrid of Chrysanthemum makinoi × Ch. vulgare (now Tanacetum vulgare). Cytologia 33:241–245

    Article  Google Scholar 

  • Tang F, Chen F, Chen S, Teng N, Fang W (2009) Intergeneric hybridization and relationship of genera within the tribe Anthemideae Cass. (I. Dendranthema crassum (Kitam.) Kitam. x Crossostephium chinense (L.) Makino). Euphytica 169(1):133–140

    Article  CAS  Google Scholar 

  • Tang FP, Chen SM, Deng YM, Chen FD (2010) Intergeneric hybridization between Dendranthema crassum and Ajania myriantha. Acta Hortic 855:267–272

    Article  Google Scholar 

  • Tatarenko E, Kondo K, Smirnov SV, Kucev M, Yang Q, Hong D, Ge S, Zhang D, Zhou S, Damdinsuren O, Abd El-Twab MH, Hizume M, Cao R, Vallès J, Motohashi T, Masuda Y (2011) Chromosome relationships among the Chrysanthemum fruticulosum complex. Chromosome Bot 6(3):61–66

    Article  Google Scholar 

  • Teixeira da Silva JA (2004) Mining the essential oils of the Anthemideae. Afr J Biotechnol 3(12):706–720

    CAS  Google Scholar 

  • Trehane P (1995) Proposal to conserve Chrysanthemum L. with a conserved type (Compositae). Taxon 44:439–441

    Article  Google Scholar 

  • Tsao R, Attygalle AB, Schroeder FC, Marvin CH, McGarvey BD (2003) Isobutylamides of unsaturated fatty acids from Chrysanthemum morifolium associated with host-plant resistance against the western flower thrips. J Nat Prod 66(9):1229–1231

    Article  PubMed  CAS  Google Scholar 

  • Tsao R, Marvin CH et al (2005) Evidence for an isobutylamide associated with host plant resistance to western flower thrips, Frankliniella occidentalis, in chrysanthemum. J Chem Ecol 31(1):103–110

    Article  PubMed  CAS  Google Scholar 

  • Uchio Y, Tomosue K, Nakayama M, Yamammura A, Waki T (1981) Constituents of the essential oil from three tetraploid species of chrysanthemum. Phytochemistry 20(12):2691–2693

    Article  CAS  Google Scholar 

  • van Geest G (2017) Disentangling hexaploid genetics. Towards DNA-informed breeding for postharvest performance in chrysanthemum. Thesis, WUR, Wageningen

    Google Scholar 

  • van Geest G, Bourke PM, Voorrips RE et al (2017a) An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis. Theor Appl Genet 130:2527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Geest G, Post A, Arens P, Visser RGF, van Meeteren U (2017b) Breeding for postharvest performance in chrysanthemum by selection against storage-induced degreening of disk florets. Postharvest Biol Technol 124:45–53

    Article  Google Scholar 

  • van Geest G, Voorrips RE, Esselink D, Post A, Visser RGF, Arens P (2017c) Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183 k SNP array. BMC Genomics 18(1):1471–2164

    Google Scholar 

  • Van Tuyl JM, Lim K-B (2003) Interspecific hybridisation and polyploidisation as tools in ornamental plant breeding. Acta Hort. 612. ISHS 2003:13–22

    Google Scholar 

  • Veilleux RE (1985) Diploid and polyploidy gametes in crop plants:mechanisms of formation and utilization in plant breeding. Plant Breed Rev 3:253–288

    Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–759

    Article  PubMed  CAS  Google Scholar 

  • Wang C (2005) Chrysanthemum genetic diversity of germplasm evaluation and molecular genetic evolution of CDS on molecular markers. Doctoral dissertation of Beijing Forestry University, China

    Google Scholar 

  • Wang J, Zhu F, Zhou XM, Niu CY, Lei CL (2006) Repellent and fumigant activity oil from Artemisia vulgaris to Tribolium casteum (Herbst) (Coleoptera:Tenebrionidae). J Stores Products Res 42(3):339–347

    Article  CAS  Google Scholar 

  • Wang H, Jiang J, Chen S, Fang W, Guan Z, Liao Y, Chen F (2013) Rapid genomic and transcriptomic alterations induced by wide hybridization: Chrysanthemum nankingense × Tanacetum vulgare and C. crassum × Crossostephium chinense (Asteraceae). BMC Genomics 14:902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang C, Zhang F, Guan Z, Chen S, Jiang J, Fang W, Chen F (2014a) Inheritance and molecular markers for aphid (Macrosiphoniella sanborni) resistance in chrysanthemum (Chrysanthemum morifolium Ramat.). Sci Hortic 180:220–226

    Article  CAS  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J (2014b) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Wu YH, Tian XQ, Bai ZY, Liang QY, Liu QL, Pan YZ, Zhang L, Jiang BB (2017) Overexpression of DgWRKY4 enhances salt tolerance in Chrysanthemum seedlings. Front Plant Sci 13. https://doi.org/10.3389/fpls.2017.01592

  • Widmer RE (1978) Chrysanthemum named Minngopher. U.S. Plant Patent, No. 4,327. U.S. Patent Office, Washington, DC

    Google Scholar 

  • Wu X, Hong G, Liu Y, Xie F, Liu Z, Liu W, Zhao H (2015) Possible intergeneric hybridization between Cancrinia maximowiczii C. Winkl. and Chrysanthemum naktongense (Nakai) Tzvel. × C. ×morifolium Ramat. ‘Aifen’. Genet Resour Crop Evol 62(2):293–301

    Article  Google Scholar 

  • Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, Fei Z, Gao J, Hong B (2013) Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genomics 14(1):1–15

    Article  Google Scholar 

  • Yamaguchi H, Shimizu A, Degi K, Morishita T (2008) Effects of dose and dose rate of gamma ray irradiation on mutation induction and nuclear DNA content in chrysanthemum. Breed Sci 58:331–335

    Article  Google Scholar 

  • Yang W, Glover BJ, Rao GY, Yang J (2006) Molecular evidence for multiple polyploidization and lineage recombination in the Chrysanthemum indicum polyploid complex (Asteraceae). New Phytol 171(4):875–886

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Hu X, Liu Z, Zhao H (2010) Intergeneric hybridizations between Opisthopappus taihangensis and Chrysanthemum lavandulifolium. Sci Hortic 125:718–723

    Article  CAS  Google Scholar 

  • Yoshioka S, Aida R, Yamamizo C et al (2012) The carotenoid cleavage dioxygenase4 (CmCCD4a) gene family encodes a key regulator of petal color mutation in chrysanthemum. Euphytica 184:377

    Article  CAS  Google Scholar 

  • Zeven AC, Zhukovsky PM (1975) Dictionary of cultivated plants and their centres of diversity. Excluding ornamentals, forest trees and lower plants. Pudoc, Wageningen

    Google Scholar 

  • Zhang F, Chen S, Chen F, Fang W, Li F (2010) A preliminary genetic linkage map of chrysanthemum (Chrysanthemum morifolium) cultivars using RAPD, ISSR and AFLP markers. Sci Hortic 125:422–428

    Article  CAS  Google Scholar 

  • Zhang F, Chen S, Chen F, Fang W, Chen Y, Li F (2011a) SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol Breed 27:11–23

    Article  CAS  Google Scholar 

  • Zhang F, Chen S, Chen F, Fang W, Deng Y, Chang Q, Liu P (2011b) Genetic analysis and associated SRAP markers for flowering traits of chrysanthemum (Chrysanthemum morifolium). Euphytica 177:15–24

    Article  CAS  Google Scholar 

  • Zhang F, Jiang J, Chen S, Chen F, Fang W (2012a) Detection of quantitative trait loci for leaf traits in chrysanthemum. J Hortic Sci Biotechnol 87:613–618

    Article  Google Scholar 

  • Zhang F, Jiang J, Chen S, Chen F, Fang W (2012b) Mapping single-locus and epistatic quantitative trait loci for plant architectural traits in chrysanthemum. Mol Breed 30:1027–1036

    Article  Google Scholar 

  • Zhang F, Chen SM, Jiang JF, Guan ZY, Fang WM, Chen FD (2013a) Genetic mapping of quantitative trait loci underlying flowering time in chrysanthemum (Chrysanthemum morifolium). PLoS One 8(12):e83023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Wang C, Ma HZ, Dai SL (2013b) Assessing the genetic diversity of chrysanthemum cultivars with microsatellites. J Am Soc Hortic Sci 138(6):479–486

    CAS  Google Scholar 

  • Zhang Y, Zhu M, Dai S (2013c) Analysis of karyotype diversity of 40 Chinese chrysanthemum cultivars. J Syst Evol 51:335–352

    Article  Google Scholar 

  • Zhao HE, Liu ZH, Hu X, Yin JL, Li W, Rao GY, Zhang XH, Huang CL, Anderson N, Zhang QX, Chen JY (2009) Chrysanthemum genetic resources and related genera of Chrysanthemum collected in China. Genet Resour Crop Evol 56:937

    Article  CAS  Google Scholar 

  • Zhao HB, Chen F, Chen S, Wu G, Guo W (2010) Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences. Plant Syst Evol 284:153–169

    Article  CAS  Google Scholar 

  • Zhao HB, Chen F, Tang F, Jiang J, Li C, Miao H, Chen F, Fang W, Guo W (2012) Morphological characteristics and chromosome behaviour in F1, F2 and BC1 progenies between Chrysanthemum × morifolium and Ajania pacifica. Russ J Genet 48(8):808–818

    Article  CAS  Google Scholar 

  • Zheng Y, Shen J, An YM, Zhang JQ, Rao GY (2013) Intergeneric hybridization between Elachanthemum intricatum (Franch.) Ling et Ling and Opisthopappus taihangensis (Y. Ling) C. Shih. Genet Resour Crop Evol 60(2):473–482

    Article  Google Scholar 

  • Zhu WY, Zhang ZF, Chen SM, Xu L, Wang L, Wang H, Qi X, Li H, Chen F (2014) Intergeneric hybrids between Chrysanthemum morifolium ‘Nannongxiaoli’ and Artemisia vulgaris ‘Variegata’ show enhanced resistance against both aphids and Alternaria leaf spot. Euphytica 197(3):399–408

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert van Geest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spaargaren, J., van Geest, G. (2018). Chrysanthemum. In: Van Huylenbroeck, J. (eds) Ornamental Crops. Handbook of Plant Breeding, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-90698-0_14

Download citation

Publish with us

Policies and ethics