Skip to main content

A Functional Perspective on Machine Learning via Programmable Induction and Abduction

  • Conference paper
  • First Online:
Functional and Logic Programming (FLOPS 2018)

Abstract

We present a programming language for machine learning based on the concepts of ‘induction’ and ‘abduction’ as encountered in Peirce’s logic of science. We consider the desirable features such a language must have, and we identify the ‘abductive decoupling’ of parameters as a key general enabler of these features. Both an idealised abductive calculus and its implementation as a PPX extension of OCaml are presented, along with several simple examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Curry-Howard correspondence emphasises types, whereas realisability emphasises proofs. Because we discuss new proof rules, rather than new types, we will prefer the realisability approach.

  2. 2.

    Abduction is essential in making statements about reality when we only have access to sense-data such as measurements. For example, the Result might be ‘The thermometer reads \(10^{\circ }\)’ with the Rule ‘If the temperature is \(10^{\circ }\) then the thermometer reads \(10^{\circ }\)’. From these we can abduce the Case, that ‘The temperature is \(10^{\circ }\)’. Note that this can never be apodeictic because, for example, the thermometer may be broken. Denying abductive reasoning and demanding the certainty of deduction leads to universal scepticism, e.g. Descartes’s ‘evil demon’ which may subvert our experience of the world.

  3. 3.

    http://bit.ly/abd-vis.

  4. 4.

    https://github.com/DecML/decml-ppx.

References

  1. Chu, C.T., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G., Olukotun, K., Ng, A.Y.: Map-reduce for machine learning on multicore. In: Advances in Neural Information Processing Systems, pp. 281–288 (2007)

    Google Scholar 

  2. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)

    Google Scholar 

  3. Huet, G.: Deduction and computation. In: Bibel, W., Jorrand, P. (eds.) Fundamentals of Artificial Intelligence: An Advanced Course. LNCS, vol. 232, pp. 38–74. Springer, Heidelberg (1986). https://doi.org/10.1007/BFb0022680

    Chapter  Google Scholar 

  4. Muroya, K., Cheung, S., Ghica, D.R.: Abductive functional programming, a semantic approach. CoRR abs/1710.03984 (2017). Submitted for publication

    Google Scholar 

  5. Howson, C.: Hume’s Problem: Induction and the Justification of Belief. Clarendon Press, Oxford (2000)

    Book  Google Scholar 

  6. Kleene, S.C.: On the interpretation of intuitionistic number theory. J. Symb. Log. 10(4), 109–124 (1945)

    Article  MathSciNet  Google Scholar 

  7. Howard, W.A.: The formulae-as-types notion of construction. In: To HB Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, vol. 44, pp. 479–490 (1980)

    Google Scholar 

  8. Sheridan, F.: A survey of techniques for inference under uncertainty. Artif. Intell. Rev. 5(1–2), 89–119 (1991)

    Article  Google Scholar 

  9. Aurenhammer, F.: Voronoi diagramsa survey of a fundamental geometric data structure. ACM Comput. Surv. (CSUR) 23(3), 345–405 (1991)

    Article  Google Scholar 

  10. Marks, R.: Introduction to Shannon Sampling and Interpolation Theory. Springer, New York (2012). https://doi.org/10.1007/978-1-4613-9708-3

    Book  MATH  Google Scholar 

  11. Vaughn, B.K.: Data analysis using regression and multilevel/hierarchical models. J. Educ. Meas. 45(1), 94–97 (2008)

    Article  Google Scholar 

  12. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR-Spektrum 22(4), 425–460 (2000)

    Article  MathSciNet  Google Scholar 

  13. Snyman, J.: Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms, vol. 97. Springer, Boston (2005). https://doi.org/10.1007/b105200

    Book  MATH  Google Scholar 

  14. Smith, B.C.: Reflection and semantics in Lisp. In: POPL, pp. 23–35. ACM (1984)

    Google Scholar 

  15. Rall, L.B.: Automatic Differentiation: Techniques and Applications. Springer, Heidelberg (1981). https://doi.org/10.1007/3-540-10861-0

    Book  MATH  Google Scholar 

  16. Lyness, J.N., Moler, C.B.: Numerical differentiation of analytic functions. SIAM J. Numer. Anal. 4(2), 202–210 (1967)

    Article  MathSciNet  Google Scholar 

  17. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  18. Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74(368), 829–836 (1979)

    Article  MathSciNet  Google Scholar 

  19. Lewis, J.R., Launchbury, J., Meijer, E., Shields, M.B.: Implicit parameters: dynamic scoping with static types. In: POPL, pp. 108–118 (2000)

    Google Scholar 

  20. Girard, J.Y.: Geometry of interaction 1: interpretation of system F. Stud. Log. Found. Math. 127, 221–260 (1989)

    Article  MathSciNet  Google Scholar 

  21. Muroya, K., Ghica, D.R.: The dynamic geometry of interaction machine: a call-by-need graph rewriter. In: Computer Science Logic, pp. 32:1–32:15 (2017)

    Google Scholar 

  22. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml system release 4.02 (2013)

    Google Scholar 

  23. Svenningsson, J., Axelsson, E.: Combining deep and shallow embedding for EDSL. In: Loidl, H.-W., Peña, R. (eds.) TFP 2012. LNCS, vol. 7829, pp. 21–36. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40447-4_2

    Chapter  Google Scholar 

  24. Scherr, M., Chiba, S.: Implicit staging of EDSL expressions: a bridge between shallow and deep embedding. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 385–410. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44202-9_16

    Chapter  Google Scholar 

  25. Gibbons, J., Wu, N.: Folding domain-specific languages: deep and shallow embeddings (functional pearl). In: ICFP, Gothenburg, Sweden, pp. 339–347 (2014)

    Google Scholar 

  26. Martin-Löf, P.: Analytic and synthetic judgements in type theory. In: Parrini, P. (ed.) Kant and Contemporary Epistemology, pp. 87–99. Springer, Dordrecht (1994). https://doi.org/10.1007/978-94-011-0834-8_5

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan R. Ghica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheung, S., Darvariu, V., Ghica, D.R., Muroya, K., Rowe, R.N.S. (2018). A Functional Perspective on Machine Learning via Programmable Induction and Abduction. In: Gallagher, J., Sulzmann, M. (eds) Functional and Logic Programming. FLOPS 2018. Lecture Notes in Computer Science(), vol 10818. Springer, Cham. https://doi.org/10.1007/978-3-319-90686-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90686-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90685-0

  • Online ISBN: 978-3-319-90686-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics