Skip to main content

Transgenic Plants for Improved Salinity and Drought Tolerance

  • Chapter
  • First Online:

Abstract

Salinity and drought are the two most brutal environmental stresses that greatly affect plant growth and productivity. The worldwide increase in human population has made such stress assume a more disastrous form. In order to provide sufficient food and mitigate global hunger, a more sustainable and sufficient means of crop production is of urgent necessity. In the last decade, scientists have carried out extensive research to develop salt- and drought-tolerant crops through conventional breeding, but the outcome of these programs was not found to be convincing, as indicated by the limited number of salt- and drought-tolerant genotypes released so far. This is because hybridization is time-consuming and labor intensive. Whole genome sequencing, proteomic and metabolomic analysis of different crop plants under salt and drought stress has led scientists to identify different groups of genes involved in stress tolerance. Genetic engineering approach provides a comprehensive and more promising or practical tool to clone single gene or gene clusters and precisely characterize their function by introgression into other crop species, as compared to traditional crossing technique. The present chapter highlights the recent developments in transgenic research through incorporation and overexpression of single or multiple genes, either in homologous or heterologous background, thereby enhancing tolerance to salt and drought stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abass M, Morris PC (2013) The Hordeum vulgare signalling protein MAP kinase 4 is a regulator of biotic and abiotic stress responses. J Plant Physiol 170:1353–1359

    Article  PubMed  CAS  Google Scholar 

  • Agarwal P, Dabi M, Sapara KK et al (2016) Ectopic expression of JcWRKY transcription factor confers salinity tolerance via salicylic acid signaling. Front Plant Sci 7:1541

    PubMed  PubMed Central  Google Scholar 

  • Ahmad R, Kim YH, Kim MD et al (2010) Simultaneous expression of choline oxidase, superoxide dismutase and ascorbate peroxidase in potato plant chloroplasts provides synergistically enhanced protection against various abiotic stresses. Physiol Plant 138:520–533

    Article  PubMed  CAS  Google Scholar 

  • Ahmed AAM, Roosens N, Dewaele E et al (2015) Overexpression of a novel feedback-desensitized Δ1-pyrroline-5-carboxylate synthetase increases proline accumulation and confers salt tolerance in transgenic Nicotiana plumbaginifolia. Plant Cell Tissue Organ Cult 122:383

    Article  CAS  Google Scholar 

  • Ahsan M, Zafar AY, Iqbal J et al (2011) Enhanced expression of AtNHX1, in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerence. Mol Biotechnol 49:250–256

    Article  CAS  Google Scholar 

  • Alcázar R, Altabella T, Marco F et al (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Alet AI, Sanchez DH, Cuevas JC et al (2011) Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signal Behav 6:278–286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Almadanim MC, Alexandre BM, Rosa MTG et al (2017) Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. Plant Cell Environ. https://doi.org/10.1111/pce.12916

  • Anjum NA, Sharma P, Gill SS et al (2016) Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut Res 23:19002–19029

    Article  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Árnadóttir J, Chalfie M (2010) Eukaryotic mechanosensitive channels. Annu Rev Biophys 39:111–137

    Article  PubMed  CAS  Google Scholar 

  • Asano T, Hakata M, Nakamura H et al (2011) Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. Plant Mol Biol 75:179–191

    Article  PubMed  CAS  Google Scholar 

  • Asano T, Hayashi N, Kobayashi M et al (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69:26–36

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752

    Article  PubMed  CAS  Google Scholar 

  • Augustine SM, Ashwin Narayan J, Syamaladevi DP et al (2015) Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep 34:247–263

    Article  PubMed  CAS  Google Scholar 

  • Babu RC, Zhang J, Blum A et al (2004) HVA1 , a LEA gene from barley confers dehydration tolerance in transgenic rice ( Oryza sativa L .) via cell membrane protection. Plant Sci 166:855–862

    Article  CAS  Google Scholar 

  • Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942

    Article  PubMed  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2015) WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J 2015:807560

    Article  Google Scholar 

  • Banerjee A, Roychoudhury A (2016) Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress. Plant Growth Regul 79:1–17

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2017) Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma 254:3–16

    Article  PubMed  CAS  Google Scholar 

  • Banjara M, Zhu L, Shen G (2012) Expression of an Arabidopsis sodium / proton antiporter gene (AtNHX1) in peanut to improve salt tolerance. Plant Biotechnol Rep 6:59–67

    Article  Google Scholar 

  • Bao F, Du D, An Y et al (2017) Overexpression of Prunus mume Dehydrin genes in tobacco enhances tolerance to cold and drought. Front Plant Sci 8:151

    PubMed  PubMed Central  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A et al (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biedermannova L, Riley KE, Berka K et al (2008) Another role of proline: stabilization interactions in proteins and protein complexes concerning proline and tryptophane. Phys Chem Chem Phys 10:6350–6359

    Article  PubMed  CAS  Google Scholar 

  • Bouaziz D, Pirrello J, Charfeddine M et al (2013) Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants. Mol Biotechnol 54:803–817

    Article  PubMed  CAS  Google Scholar 

  • Cai G, Wang G, Wang L et al (2014) A maize mitogen-activated protein kinase kinase, ZmMKK1, positively regulated the salt and drought tolerance in transgenic Arabidopsis. J Plant Physiol 171:1003–1016

    Article  PubMed  CAS  Google Scholar 

  • Cai H, Tian S, Dong H, Guo C (2015) Pleiotropic effects of TaMYB3R1 on plant development and response to osmotic stress in transgenic Arabidopsis. Gene 558:227–234

    Article  PubMed  CAS  Google Scholar 

  • Cao ZH, Zhang SZ, Wang RK et al (2013) Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene confering abiotic stress tolerance in plants. PLoS One 8:e69955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci 101:9909–9914

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Checker VG, Chhibbar AK, Khurana P (2012) Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought , salinity and cold stress. Transgenic Res 21:939–957

    Article  PubMed  CAS  Google Scholar 

  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    Article  PubMed  CAS  Google Scholar 

  • Chen ZQ, Liu Q, Zhu YS, Li YX (2002) Wheat LEA genes PMA80 and PMA 1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed 10:71–82

    Article  Google Scholar 

  • Chen H, An R, Tang JH et al (2007) Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice. Mol Breed 19:215–225

    Article  CAS  Google Scholar 

  • Chen J, Xue B, Xia X, Yin W (2013a) A novel calcium-dependent protein kinase gene from Populus euphratica, confers both drought and cold stress tolerance. Biochem Biophys Res Commun 441:630–636

    Article  PubMed  CAS  Google Scholar 

  • Chen JB, Yang JW, Zhang ZY et al (2013b) Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. J Genet 92:461–469

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Wang QQ, Zhou L et al (2013c) Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol Biol Rep 40:4759–4767

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Huang Q, Zhang F et al (2014a) ZmCIPK21, a maize CBL-interacting kinase, enhances salt stress tolerance in Arabidopsis thaliana. Int J Mol Sci 15:14819–14834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X, Wang Y, Lv B et al (2014b) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55:604–619

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Liu L, Wang L et al (2016) VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana. J Plant Res 129:263–273

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Zou Y, Ding S et al (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Li S, Hussain J et al (2013) Isolation and functional characterization of a salt responsive transcriptional factor, LrbZIP from lotus root (Nelumbo nucifera Gaertn). Mol Biol Rep 40:4033–4045

    Article  PubMed  CAS  Google Scholar 

  • Chu X, Wang C, Chen X et al (2015) The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS One 10:e0143022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chun J, Li F-S, Ma Y et al (2014) Cloning and characterization of a SnRK2 gene from Jatropha curcas L. Genet Mol Res 13:10958–10975

    Article  PubMed  CAS  Google Scholar 

  • Coello P, Hey SJ, Halford NG (2011) The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot 62:883–893

    Article  PubMed  CAS  Google Scholar 

  • Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139:137–145

    Article  PubMed  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Dash M, Yordanov YS, Georgieva T et al (2017) Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress. Plant J 89:692–705

    Article  PubMed  CAS  Google Scholar 

  • de Zelicourt A, Colcombet J, Hirt H (2016) The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci 21:677–685

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Hu W, Wei S et al (2013a) TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One 8:e69881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng X, Zhou S, Hu W et al (2013b) Ectopic expression of wheat TaCIPK14, encoding a calcineurin B-like protein-interacting protein kinase, confers salinity and cold tolerance in tobacco. Physiol Plant 149:367–377

    PubMed  CAS  Google Scholar 

  • Dey A, Samanta MK, Gayen S et al (2016a) Enhanced gene expression rather than natural polymorphism in coding sequence of the OsbZIP23 determines drought tolerance and yield improvement in rice genotypes. PLoS One 11:e0150763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dey A, Samanta MK, Gayen S, Maiti MK (2016b) The sucrose non-fermenting 1-related kinase 2 gene SAPK9 improves drought tolerance and grain yield in rice by modulating cellular osmotic potential, stomatal closure and stress-responsive gene expression. BMC Plant Biol 16:158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diaz-Vivancos P, Faize M, Barba-Espin G et al (2013) Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnol J 11:976–985

    Article  PubMed  CAS  Google Scholar 

  • Ding Z, Li S, An X et al (2009) Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics 36:17–29

    Article  PubMed  CAS  Google Scholar 

  • Dow GJ, Berry JA, Bergmann DC (2014) The physiological importance of developmental mechanisms that enforce proper stomatal spacing in Arabidopsis thaliana. New Phytol 201:1205–1217

    Article  PubMed  CAS  Google Scholar 

  • Dubos C, Stracke R, Grotewold E et al (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  PubMed  CAS  Google Scholar 

  • Dubrovina AS, Kiselev KV, Khristenko VS, Aleynova OA (2015) VaCPK20 , a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance. J Plant Physiol 185:1–12

    Article  PubMed  CAS  Google Scholar 

  • Fang L, Su L, Sun X et al (2016) Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis. J Exp Bot 67:2829–2845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ganguly M, Datta K, Roychoudhury A, Gayen D, Sengupta DN, Datta SK (2012) Overexpression of Rab16A gene in indica rice variety for generating enhanced salt tolerance. Plant Signal Behav 7:502–509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao SQ, Chen M, Xu ZS et al (2011) The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol 75:537–553

    Article  PubMed  CAS  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong X, Zhang J, Hu J et al (2015) FcWRKY70, a WRKY protein of Fortunella crassifolia, functions in drought tolerance and modulates putrescine synthesis by regulating arginine decarboxylase gene. Plant Cell Environ 38:2248–2262

    Article  PubMed  CAS  Google Scholar 

  • Gosal SS, Wani SH, Kang MS (2009) Biotechnology and drought tolerance. J Crop Improv 23:19–54

    Article  CAS  Google Scholar 

  • Gu L, Liu Y, Zong X, et al (2010) Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in Arabidopsis increases tolerance to salt stress. Mol Biol Rep 37:4067–4073

    Article  PubMed  CAS  Google Scholar 

  • Guedes Corrêa LG, Riaño-Pachón DM, Guerra Schrago C, et al. (2008) The role of bZIP transcription factors in green plant evolution: Adaptive features emerging from four founder genes. PLoS One 3:e2944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gunapati S, Naresh R, Ranjan S et al (2016) Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. Sci Rep 6:24978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo Y, Halfter U, Ishitani M, Zhu JK (2001) Molecular characterization of functional domains in the protein kinase SOS2 t7hat is required for plant salt tolerance. Plant Cell 13:1383–1400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo Y, Qiu Q-S, Quintero FJ et al (2004) Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell 16:435–449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halford NG, Hey S, Jhurreea D et al (2003) Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. J Exp Bot 54:467–475

    Article  PubMed  CAS  Google Scholar 

  • Hao Y-J, Wei W, Song Q-X et al (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68:302–313

    Article  PubMed  CAS  Google Scholar 

  • Hao L, Wen Y, Zhao Y et al (2015) Wheat mitogen-activated protein kinase gene TaMPK4 improves plant tolerance to multiple stresses through modifying root growth, ROS metabolism, and nutrient acquisitions. Plant Cell Rep 34:2081–2097

    Article  PubMed  CAS  Google Scholar 

  • Hasthanasombut S, Ntui V, Supaibulwatana K et al (2010) Expression of Indica rice OsBADH1 gene under salinity stress in transgenic tobacco. Plant Biotechnol Rep 4:75–83

    Article  Google Scholar 

  • Hasthanasombut S, Supaibulwatana K, Mii M, Nakamura I (2011) Genetic manipulation of Japonica rice using the OsBADH1 gene from Indica rice to improve salinity tolerance. Plant Cell Tissue Organ Cult 104:79–89

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN et al (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He Y, Li W, Lv J et al (2012) Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. J Exp Bot 63:1511–1522

    Article  PubMed  CAS  Google Scholar 

  • He G-H, Xu J-Y, Wang Y-X et al (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12:343–351

    Article  PubMed  CAS  Google Scholar 

  • Hobo T, Kowyama Y, Hattori T (1999) A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci U S A 96:15348–15353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hong Y, Zhang H, Huang L et al (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain M, Lee Y, Cho J-I et al (2010) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72:557–566

    Article  CAS  Google Scholar 

  • Hu DG, Li M, Luo H et al (2012) Molecular cloning and functional characterization of MdSOS2 reveals its involvement in salt tolerance in apple callus and Arabidopsis. Plant Cell Rep 31:713–722

    Article  PubMed  CAS  Google Scholar 

  • Hu DG, Ma QJ, Sun CH et al (2016) Overexpression of MdSOS2L1, a CIPK protein kinase, increases the antioxidant metabolites to enhance salt tolerance in apple and tomato. Physiol Plant 156:201–214

    Article  PubMed  CAS  Google Scholar 

  • Huang Q, Wang Y (2016) Overexpression of TaNAC2D displays opposite responses to abiotic stresses between seedling and mature stage of transgenic Arabidopsis. Front Plant Sci 7:1754

    PubMed  PubMed Central  Google Scholar 

  • Huang X-S, Liu J-H, Chen X-J (2010) Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol 10:230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang Q, Wang Y, Li B et al (2015) TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol 15:268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang L, Hong Y, Zhang H et al (2016a) Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. BMC Plant Biol 16:203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang Z, Zhong X-J, He J et al (2016b) Genome-wide identification, characterization, and stress-responsive expression profiling of genes encoding LEA (late embryogenesis abundant) proteins in Moso Bamboo (Phyllostachys edulis). PLoS One 11:e0165953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hwang I, Manoharan RK, Kang J et al (2016) Genome-wide identification and characterization of bZIP transcription factors in Brassica oleracea under cold stress. Biomed Res Int 2016:4376598

    PubMed  PubMed Central  Google Scholar 

  • Ibragimova SM, Trifonova EA, Filipenko EA, Shymny VK (2015) Evaluation of salt tolerance of transgenic tobacco plants bearing with P5CS1 gene of Arabidopsis thaliana. Genetika 51:1368–1375

    PubMed  CAS  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W et al (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  PubMed  CAS  Google Scholar 

  • Jeong JS, Kim YS, Baek KH et al (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in Rice under field drought conditions. Plant Physiol 153:185–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong JS, Kim YS, Redillas MCFR et al (2013) OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J 11:101–114

    Article  PubMed  CAS  Google Scholar 

  • Jia H, Wang C, Wang F et al (2015) GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS One 10:e0120646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia H, Hao L, Guo X et al (2016) A Raf-like MAPKKK gene, GhRaf19, negatively regulates tolerance to drought and salt and positively regulates resistance to cold stress by modulating reactive oxygen species in cotton. Plant Sci 252:267–281

    Article  PubMed  CAS  Google Scholar 

  • Jiang S, Zhang D, Wang L et al (2013) A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis. Plant Physiol Biochem 71:112–120

    Article  PubMed  CAS  Google Scholar 

  • Jing X, Hou P, Lu Y et al (2015) Overexpression of copper/zinc superoxide dismutase from mangrove Kandelia candel in tobacco enhances salinity tolerance by the reduction of reactive oxygen species in chloroplast. Front Plant Sci 6:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Joo J, Choi HJ, Lee YH et al (2013) A transcriptional repressor of the ERF family confers drought tolerance to rice and regulates genes preferentially located on chromosome 11. Planta 238:155–170

    Article  PubMed  CAS  Google Scholar 

  • Joshi R, Wani SH, Singh B et al (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaouthar F, Ameny FK, Yosra K et al (2016) Responses of transgenic Arabidopsis plants and recombinant yeast cells expressing a novel durum wheat manganese superoxide dismutase TdMnSOD to various abiotic stresses. J Plant Physiol 198:56–68

    Article  PubMed  CAS  Google Scholar 

  • Kasukabe Y (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  PubMed  CAS  Google Scholar 

  • Kasukabe Y, He L, Watakabe Y et al (2006) Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol 23:75–83

    Article  CAS  Google Scholar 

  • Ke Q, Wang Z, Ji CY et al (2016a) Transgenic poplar expressing codA exhibits enhanced growth and abiotic stress tolerance. Plant Physiol Biochem 100:75–84

    Article  PubMed  CAS  Google Scholar 

  • Ke YT, Lu CA, Wu SJ, Yeh CH (2016b) Characterization of Rice Group 3 LEA genes in developmental stages and under abiotic stress. Plant Mol Biol Report 34:1003–1015

    Article  CAS  Google Scholar 

  • Kerr TCC, Abdel-Mageed H, Aleman L et al (2017) Ectopic expression of two AREB/ABF orthologs increase dehydration tolerance in cotton (Gossypium hirsutum). Plant Cell Environ. https://doi.org/10.1111/pce.12906

  • Khan MS, Ahmad D, Khan MA (2015) Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electron J Biotechnol 18:257–266

    Article  CAS  Google Scholar 

  • Kim G-B, Nam Y-W (2013) A novel Δ1-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation. J Plant Physiol 170:291–302

    Article  PubMed  CAS  Google Scholar 

  • Kim CY, Vo KTX, Nguyen CD et al (2016) Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71. Plant Biotechnol Rep 10:13–23

    Article  CAS  Google Scholar 

  • Kishor PBK, Hong ZL, Miao GH et al (1995) Overexpression of ð-Pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kobayashi Y, Yamamoto S, Minami H et al (2004) Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16:1163–1177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kong X, Pan J, Zhang M et al (2011) ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ 34:1291–1303

    Article  PubMed  CAS  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kudo M, Kidokoro S, Yoshida T et al (2017) Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol J 15:458–471

    Article  PubMed  CAS  Google Scholar 

  • Kumar K, Sinha AK (2013) Overexpression of constitutively active mitogen activated protein kinase kinase 6 enhances tolerance to salt stress in rice. Rice 6:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Shriram V, Kishor PBK et al (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol Rep 4:37–48

    Article  Google Scholar 

  • Kumar MN, Jane W-N, Verslues PE (2013) Role of the putative osmosensor Arabidopsis histidine kinase 1 in dehydration avoidance and low-water-potential response. Plant Physiol 161:942–953

    Article  PubMed  CAS  Google Scholar 

  • Le DT, Nishiyama R, Watanabe YA et al (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee D-K, Chung PJ, Jeong JS et al (2016) The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J:1–11

    Google Scholar 

  • Leidi EO, Barragán V, Rubio L et al (2010) The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J 61:495–506

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Liu J, Tan D et al (2013) A genome-wide expression profile of salt-responsive genes in the apple rootstock Malus zumi. Int J Mol Sci 14:21053–21070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li C, Chang PP, Ghebremariam KM et al (2014a) Overexpression of tomato SpMPK3 gene in Arabidopsis enhances the osmotic tolerance. Biochem Biophys Res Commun 443:357–362

    Article  PubMed  CAS  Google Scholar 

  • Li JB, Luan YS, Yin YL (2014b) SpMYB overexpression in tobacco plants leads to altered abiotic and biotic stress responses. Gene 547:145–151

    Article  PubMed  CAS  Google Scholar 

  • Li D, Fu F, Zhang H, Song F (2015a) Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.). BMC Genomics 16:771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J b, Luan Y s, Liu Z (2015b) Overexpression of SpWRKY1 promotes resistance to Phytophthora nicotianae and tolerance to salt and drought stress in transgenic tobacco. Physiol Plant 155:248–266

    Article  PubMed  CAS  Google Scholar 

  • Li X, Feng B, Zhang F et al (2016) Bioinformatic analyses of subgroup-a members of the wheat bZIP transcription factor family and functional identification of TabZIP174 involved in drought stress response. Front Plant Sci 7:1643

    PubMed  PubMed Central  Google Scholar 

  • Li K, Xing C, Yao Z, Huang X (2017a) PbrMYB21, a novel MYB protein of Pyrus betulaefolia, functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene. Plant Biotechnol J. https://doi.org/10.1111/pbi.12708

  • Li Y, Cai H, Liu P et al (2017b) Arabidopsis MAPKKK18 positively regulates drought stress resistance via downstream MAPKK3. Biochem Biophys Res Commun 484:292–297

    Article  PubMed  CAS  Google Scholar 

  • Liang C, Meng Z, Meng Z et al (2016a) GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci Rep 6:35040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang Y, Xiong Z, Zheng J et al (2016b) Genome-wide identification, structural analysis and new insights into late embryogenesis abundant (LEA) gene family formation pattern in Brassica napus. Sci Rep 6:24265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao X, Guo X, Wang Q et al (2016) Overexpression of MsDREB6.2 results in cytokinin-deficient developmental phenotypes and enhances drought tolerance in transgenic apple plants. Plant J 89:510–526

    Article  CAS  Google Scholar 

  • Liu X, Chu Z (2015) Genome-wide evolutionary characterization and analysis of bZIP transcription factors and their expression profiles in response to multiple abiotic stresses in Brachypodium distachyon. BMC Genomics 16:227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Ishitani M, Halfter U et al (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci 97:3730–3734

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu H, Yang W, Liu D et al (2011) Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis. Mol Biol Rep 38:417–427

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Liu S, Wu J et al (2013) Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiol Biochem 70:354–359

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Mao B, Ou S et al (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84:19–36

    Article  PubMed  CAS  Google Scholar 

  • Liu J-H, Wang W, Wu H et al (2015a) Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci 6:827

    PubMed  PubMed Central  Google Scholar 

  • Liu ZB, Zhang WJ, Gong XD et al (2015b) A Cu/Zn superoxide dismutase from Jatropha curcas enhances salt tolerance of Arabidopsis thaliana. Genet Mol Res 14:2086–2098

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Zhang Z, Dong J, Wang T (2016a) Overexpression of MtWRKY76 increases both salt and drought tolerance in Medicago truncatula. Environ Exp Bot 123:50–58

    Article  CAS  Google Scholar 

  • Liu X, Song Y, Xing F et al (2016b) GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma 253:1265–1281

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Liu P, Qi D et al (2017) Enhancement of cold and salt tolerance of Arabidopsis by transgenic expression of the S-adenosylmethionine decarboxylase gene from Leymus chinensis. J Plant Physiol 211:90–99

    Article  PubMed  CAS  Google Scholar 

  • Lovas Á, Bimbó A, Szabó L, Bánfalvi Z (2003) Antisense repression of StubGAL83 affects root and tuber development in potato. Plant J 33:139–147

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26:1909–1917

    Article  PubMed  CAS  Google Scholar 

  • Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229:605–615

    Article  PubMed  CAS  Google Scholar 

  • Lu W, Chu X, Li Y et al (2013) Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defence responses to pathogen infection in transgenic Nicotiana benthamiana. PLoS One 8:e68503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo X, Bai X, Sun X et al (2013) Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance. J Exp Bot 64:2155–2169

    Article  PubMed  CAS  Google Scholar 

  • Lv F, Zhang H, Xia X, Yin W (2014) Expression profiling and functional characterization of a CBL-interacting protein kinase gene from Populus euphratica. Plant Cell Rep 33:807–818

    Article  PubMed  CAS  Google Scholar 

  • Lv Z, Wang S, Zhang F et al (2016) Overexpression of a novel NAC domain-containing transcription factor (AaNAC1) enhances the content of artemisinin and increases tolerance to drought and Botrytis cinerea in Artemisia annua. Plant Cell Physiol 57:1961–1971

    Article  PubMed  CAS  Google Scholar 

  • Ma DM, Xu WR, Li HW et al (2014) Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb.). Protoplasma 251:219–231

    Article  PubMed  CAS  Google Scholar 

  • Mallikarjuna G, Mallikarjuna K, Reddy MK, Kaul T (2011) Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnol Lett 33:1689–1697

    Article  PubMed  CAS  Google Scholar 

  • Mao X, Zhang H, Tian S et al (2010) TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot 61:683–696

    Article  PubMed  CAS  Google Scholar 

  • Mao X, Chen S, Li A et al (2014) Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS One 9:e84359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng X, Wang J-R, Wang G-D et al (2015) An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato. J Plant Physiol 175:1–8

    Article  PubMed  CAS  Google Scholar 

  • Mohanty A, Kathuria H, Ferjani A et al (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet 106:51–57

    Article  PubMed  CAS  Google Scholar 

  • Monshausen GB, Gilroy S (2009) Feeling green: mechanosensing in plants. Trends Cell Biol 19:228–235

    Article  PubMed  Google Scholar 

  • Nakashima K, Shinwari ZK, Sakuma Y et al (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657–665

    Article  PubMed  CAS  Google Scholar 

  • Negi NP, Shrivastava DC, Sharma V, Sarin NB (2015) Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco. Plant Cell Rep 34:1109–1126

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TX, Sticklen M (2013) Barley HVA1 gene confers drought and salt tolerance in transgenic maize (Zea mays L.). Adv crop. Sci Technol 1:105

    Google Scholar 

  • Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146:333–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ning J, Li X, Hicks LM, Xiong L (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152:876–890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niu X, Zheng W, Lu B-R et al (2007) An unusual posttranscriptional processing in two betaine aldehyde dehydrogenase loci of cereal crops directed by short, direct repeats in response to stress conditions. Plant Physiol 143:1929–1942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niu CF, Wei W, Zhou QY et al (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35:1156–1170

    Article  PubMed  CAS  Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM et al (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44

    Article  PubMed  CAS  Google Scholar 

  • Oraby HF, Ransom CB, Kravchenko AN, Sticklen MB (2005) Barley HVA1 gene confers salt tolerance in R3 transgenic oat. Crop Sci 45:2218–2227

    Article  CAS  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2014) ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol 202:35–49

    Article  PubMed  Google Scholar 

  • Pasquali G, Biricolti S, Locatelli F et al (2008) Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27:1677–1686

    Article  PubMed  CAS  Google Scholar 

  • Pathak MR, Teixeira JA, Wani SH (2014) Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crop Food 5:87–96

    Article  Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U et al (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6:3553–3558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pehlivan N, Sun L, Jarrett P et al (2016) Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants. Plant Cell Physiol 57:1069–1084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng X, Zhang L, Zhang L et al (2013) The transcriptional factor LcDREB2 cooperates with LcSAMDC2 to contribute to salt tolerance in Leymus chinensis. Plant Cell Tissue Organ Cult 113:245–256

    Article  CAS  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381

    Article  PubMed  CAS  Google Scholar 

  • Puranik S, Sahu PP, Mandal SN et al (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). PLoS One 8:e64594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi L, Yang J, Yuan Y et al (2015) Overexpression of two R2R3-MYB genes from Scutellaria baicalensis induces phenylpropanoid accumulation and enhances oxidative stress resistance in transgenic tobacco. Plant Physiol Biochem 94:235–243

    Article  PubMed  CAS  Google Scholar 

  • Qin Y, Wang M, Tian Y et al (2012) Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol Biol Rep 39:7183–7192

    Article  PubMed  CAS  Google Scholar 

  • Qin Y, Tian Y, Liu X (2015) A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 464:428–433

    Article  PubMed  CAS  Google Scholar 

  • Qiu Y, Yu D (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65:35–47

    Article  CAS  Google Scholar 

  • Qiu Q-S, Guo Y, M a D et al (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A 99:8436–8441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rahman H, Ramanathan V, Nallathambi J et al (2016) Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol 16:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ravikumar G, Manimaran P, Voleti SR et al (2014) Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. Transgenic Res 23:421–439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Redillas MCFR, Jeong JS, Kim YS et al (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10:792–805

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    PubMed  CAS  Google Scholar 

  • Rong W, Qi L, Wang A et al (2014) The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12:468–479

    Article  PubMed  CAS  Google Scholar 

  • Roychoudhury A, Banerjee A (2016) Endogenous glycine betaine accumulation mediates abiotic stress tolerance in plants. Tropical Plant Res 3:105–111

    Google Scholar 

  • Roychoudhury A, Chakraborty M (2013) Biochemical and molecular basis of varietal difference in plant salt tolerance. Annu Rev Res Biol 3:422–454

    CAS  Google Scholar 

  • Roychoudhury A, Das K (2014) Functional role of polyamines and polyamine-metabolizing enzymes during salinity, drought and cold stresses. In: Anjum N, Gill S, Gill R (eds) Plant adaptation to environmental change. CAB International, London, UK, pp 141–156

    Google Scholar 

  • RoyChoudhury A, Roy C, Sengupta DN (2007) Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep 26:1839–1859

    Article  PubMed  CAS  Google Scholar 

  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006

    Article  PubMed  CAS  Google Scholar 

  • Roychoudhury A, Banerjee A, Lahiri V (2015) Metabolic and molecular-genetic regulation of proline signaling and its crosstalk with major effectors mediates abiotic stress tolerance in plants. Turk J Bot 39:887–910

    Article  CAS  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  PubMed  CAS  Google Scholar 

  • Saad AS, Li X, Li H-P et al (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci 203–204:33–40

    Article  PubMed  CAS  Google Scholar 

  • Sah SK, Kaur G, Wani SH (2016) Metabolic engineering of compatible solute trehalose for abiotic stress tolerance in plants. In: Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi, pp 83–96

    Chapter  Google Scholar 

  • Saha J, Brauer EK, Sengupta A et al (2015) Polyamines as redox homeostasis regulators during salt stress in plants. Front Environ Sci 3:21

    Article  Google Scholar 

  • Sakamoto A, Alia MN (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG et al (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y et al (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shafi A, Chauhan R, Gill T et al (2015) Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol Biol 87:615–631

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Kumar D, Kumar S et al (2016) Ectopic expression of an atypical hydrophobic group 5 LEA protein from wild peanut, Arachis diogoi confers abiotic stress tolerance in tobacco. PLoS One 11:e0150609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharoni AM, Nuruzzaman M, Satoh K et al (2011) Gene structures, classification and expression models of the AP2/EREBP transcription factor family in Rice. Plant Cell Physiol 52:344–360

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Liu C, Zhang Y et al (2012) OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol Biol 80:241–253

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Lee B, Wu S-J, Zhu J-K (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  PubMed  CAS  Google Scholar 

  • Shin D, Moon S-J, Han S et al (2011) Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiol 155:421–432

    Article  PubMed  CAS  Google Scholar 

  • Shriram V, Kumar V, Devarumath RM et al (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817

    Article  PubMed  PubMed Central  Google Scholar 

  • Shukla PS, Gupta K, Agarwal P et al (2015) Overexpression of a novel SbMYB15 from Salicornia brachiata confers salinity and dehydration tolerance by reduced oxidative damage and improved photosynthesis in transgenic tobacco. Planta 242:1291–1308

    Article  PubMed  CAS  Google Scholar 

  • Song Y, Jing SJ, Yu DQ (2010) Overexpression of the stress-induced OsWRKY08 improves osmotic stress tolerance in Arabidopsis. Chinese Sci Bull 54:4671–4678

    Google Scholar 

  • Song X, Yu X, Hori C et al (2016) Heterologous overexpression of poplar SnRK2 genes enhanced salt stress tolerance in Arabidopsis thaliana. Front Plant Sci 7:612

    PubMed  PubMed Central  Google Scholar 

  • Su J, Hirji R, Zhang L et al (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Exp Bot 57:1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Su LT, Li JW, Liu DQ et al (2014) A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in Arabidopsis thaliana. Gene 538:46–55

    Article  PubMed  CAS  Google Scholar 

  • Sun P, Zhu X, Huang X, Liu JH (2014a) Overexpression of a stress-responsive MYB transcription factor of Poncirus trifoliata confers enhanced dehydration tolerance and increases polyamine biosynthesis. Plant Physiol Biochem 78:71–79

    Article  PubMed  CAS  Google Scholar 

  • Sun Z-M, Zhou M-L, Xiao X-G et al (2014b) Genome-wide analysis of AP2/ERF family genes from Lotus corniculatus shows LcERF054 enhances salt tolerance. Funct Integr Genomics 14:453–466

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Hu W, Zhou R et al (2015) The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants. Plant Cell Rep 34:23–35

    Article  PubMed  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  CAS  Google Scholar 

  • Taj G, Agarwal P, Grant M, Kumar A (2014) MAPK machinery in plants. Plant Signal Behav 5:1370–1378

    Article  CAS  Google Scholar 

  • Tak H, Negi S, Ganapathi TR (2016) Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance. Protoplasma 254:803–816

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Kwon S-Y, Kim S-H et al (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25:1380–1386

    Article  PubMed  CAS  Google Scholar 

  • Tang N, Zhang H, Li X et al (2012a) Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol 158:1755–1768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang Y, Liu M, Gao S et al (2012b) Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol Plant 144:210–224

    Article  PubMed  CAS  Google Scholar 

  • Tran L-SP, Urao T, Qin F et al (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104:20623–20628

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D (2009) CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J 58:778–790

    Article  PubMed  CAS  Google Scholar 

  • Tseng MJ, Liu CW, Yiu JC (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45:822–833

    Article  PubMed  CAS  Google Scholar 

  • Tu M, Wang X, Feng T et al (2016) Expression of a grape (Vitis vinifera) bZIP transcription factor, VlbZIP36, in Arabidopsis thaliana confers tolerance of drought stress during seed germination and seedling establishment. Plant Sci 252:311–323

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N, Mahajan S (2007) Calcium signaling network in plants: an overview. Plant Signal Behav 2:79–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Yoshida R, Maruyama K et al (2004) SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci 101:17306–17311

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Urao T, Yakubov B, Satoh R et al (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an Osmosensor. Plant Cell 11:1743–1754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Virk N, Li D, Tian L et al (2015) Arabidopsis Raf-like mitogen-activated protein kinase kinase kinase gene Raf43 is required for tolerance to multiple abiotic stresses. PLoS One 10:e0133975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vivek PJ, Tuteja N, Soniya EV (2013) CDPK1 from ginger promotes salinity and drought stress tolerance without yield penalty by improving growth and photosynthesis in Nicotiana tabacum. PLoS One 8:e76392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X-S, Zhu H-B, Jin G-L et al (2007) Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172:414–420

    Article  CAS  Google Scholar 

  • Wang BQ, Zhang QF, Liu JH, Li GH (2011a) Overexpression of PtADC confers enhanced dehydration and drought tolerance in transgenic tobacco and tomato: effect on ROS elimination. Biochem Biophys Res Commun 413:10–16

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sun PP, Chen CL et al (2011b) An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. J Exp Bot 62:2899–2914

    Article  PubMed  CAS  Google Scholar 

  • Wang R-K, Li L-L, Cao Z-H et al (2012) Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol Biol 79:123–135

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Deng P, Chen L et al (2013) A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One 8:e65120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Liu Y, Cai G et al (2014a) Ectopic expression of ZmSIMK1 leads to improved drought tolerance and activation of systematic acquired resistance in transgenic tobacco. J Biotechnol 172:18–29

    Article  PubMed  CAS  Google Scholar 

  • Wang RK, Cao ZH, Hao YJ (2014b) Overexpression of a R2R3 MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco and apples. Physiol Plant 150:76–87

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Tohge T, Ivakov A et al (2015a) Salt-related MYB1 coordinates abscisic acid biosynthesis and signaling during salt stress in Arabidopsis. Plant Physiol 169:1027–1041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Zeng J, Li Y et al (2015b) Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci 6:615

    PubMed  PubMed Central  Google Scholar 

  • Wang C, Lu W, He X et al (2016a) The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth. Plant Cell Physiol 57:1629–1642

    Article  PubMed  CAS  Google Scholar 

  • Wang FW, Wang ML, Guo C et al (2016b) Cloning and characterization of a novel betaine aldehyde dehydrogenase gene from Suaeda corniculata. Genet Mol Res 15:gmr7848

    Google Scholar 

  • Wang H, Wang H, Shao H, Tang X (2016c) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Li Q, Mao X et al (2016d) Wheat transcription factor TaAREB3 participates in drought and freezing tolerances in Arabidopsis. Int J Biol Sci 12:257–269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Sun T, Li T et al (2016e) A CBL-interacting protein kinase TaCIPK2 confers drought tolerance in transgenic tobacco plants through regulating the stomatal movement. PLoS One 11:e0167962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Su G, Li M et al (2016f) Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa. Plant Physiol Biochem 109:199–208

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wu Y, Yang X et al (2017) SmLEA2, a gene for late embryogenesis abundant protein isolated from Salvia miltiorrhiza, confers tolerance to drought and salt stress in Escherichia coli and S. miltiorrhiza. Protoplasma 254:685–696

    Article  PubMed  CAS  Google Scholar 

  • Wani SH, Singh NB, Haribhushan A, Mir JI (2013) Compatible solute engineering in plants for abiotic stress tolerance - role of glycine betaine. Curr Genomics 14:157–165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:1–15

    Article  Google Scholar 

  • Wei KA, Chen JUAN, Wang YA et al (2012) Genome-wide analysis of bZIP-encoding genes in maize. DNA Res 19:463–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei S, Hu W, Deng X et al (2014) A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol 14:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei T, Deng K, Liu D et al (2016) Ectopic expression of DREB transcription factor, AtDREB1A, confers tolerance to drought in transgenic Salvia miltiorrhiza. Plant Cell Physiol 57:1593–1609

    Article  PubMed  CAS  Google Scholar 

  • Wen XP, Pang XM, Matsuda N et al (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263

    Article  PubMed  CAS  Google Scholar 

  • Wen X-P, Ban Y, Inoue H et al (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19:91–103

    Article  PubMed  CAS  Google Scholar 

  • Wi SJ, Kim WT, Park KY (2006) Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep 25:1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Xia Z, Wei T, Jia L, Yongsheng L (2014) Co-expression of rice OsP5CS1 and OsP5CS2 genes in transgenic tobacco resulted in elevated proline biosynthesis and enhanced abiotic stress tolerance. Chinese J Appl Environ Biol 20:717–722

    Google Scholar 

  • Xiang Y, Tang N, Du H et al (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46

    Article  PubMed  CAS  Google Scholar 

  • Xing Y, Chen W-H, Jia W, Zhang J (2015) Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress. J Exp Bot 66:5971–5981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong H, Li J, Liu P et al (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One 9:e92913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu D, Duan X, Wang B et al (1996) Expression of a late embryogenesis abundant protein gene, HVA7, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Z-S, Liu L, Ni Z-Y et al (2009) W55a encodes a novel protein kinase that is involved in multiple stress responses. J Integr Plant Biol 51:58–66

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Li K, Yang F et al (2010a) Overexpression of CsNMAPK in tobacco enhanced seed germination under salt and osmotic stresses. Mol Biol Rep 37:3157–3163

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Tian Y-S, Peng R-H et al (2010b) AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Duan X, Yang J et al (2013) Coupled expression of Cu/Zn-superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses. Plant Signal Behav 8:e24525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi-shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Li Q, Park SC et al (2016) Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato. Plant Physiol Biochem 109:20–27

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Kong Z, Omo-Ikerodah E et al (2008) Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). J Genet Genomics 35:531–543

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Chen ZZ, Zhou XF et al (2009) Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31

    Article  PubMed  CAS  Google Scholar 

  • Yang A, Dai X, Zhang W-H (2012a) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang L, Ji W, Gao P et al (2012c) GsAPK, an ABA-activated and calcium-independent SnRK2-type kinase from G. soja, mediates the regulation of plant tolerance to salinity and ABA stress. PLoS One 7:e33838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Wang X, Ji L et al (2015) Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Rep 34:943–958

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Yu L, Zhang K et al (2017) A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida. Plant Physiol Biochem 113:187–197

    Article  PubMed  CAS  Google Scholar 

  • Yao L, Jiang Y, Lu X et al (2016) A R2R3-MYB transcription factor from Lablab purpureus induced by drought increases tolerance to abiotic stress in Arabidopsis. Mol Biol Rep 43:1089–1100

    Article  PubMed  CAS  Google Scholar 

  • Yin X-Y, Yang A-F, Zhang K-W, Zhang J-R (2004) Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot Sin 7:854–861

    Google Scholar 

  • Ying S, Zhang D-F, Fu J et al (2012) Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta 235:253–266

    Article  PubMed  CAS  Google Scholar 

  • Yokotani N, Ichikawa T, Kondou Y et al (2009) Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229:1065–1075

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Lai Y, Wu X et al (2016) Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice. Biochem Biophys Res Commun 478:703–709

    Article  PubMed  CAS  Google Scholar 

  • Yuan F, Yang H, Xue Y et al (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367–371

    Article  PubMed  CAS  Google Scholar 

  • Yue Y, Zhang M, Zhang J et al (2012) SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K +/Na + ratio. J Plant Physiol 169:255–261

    Article  PubMed  CAS  Google Scholar 

  • Zhai Y, Wang Y, Li Y et al (2013) Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene 513:174–183

    Article  PubMed  CAS  Google Scholar 

  • Zhang H-X, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci 98:12832–12836

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang H, Liu W, Wan L et al (2010a) Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res 19:809–818

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Mao X, Wang C, Jing R (2010b) Overexpression of a common wheat gene Tasnrk2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS One 5:e16041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Mao X, Jing R et al (2011a) Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses. J Exp Bot 62:975–988

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Xi D, Li S et al (2011b) A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol 77:17–31

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Wang L, Meng H et al (2011c) Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol Biol 75:365–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang D, Jiang S, Pan J et al (2014a) The overexpression of a maize mitogen-activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco. Plant Biol 16:558–570

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zou D, Li Y et al (2014b) GhMPK17, a cotton mitogen-activated protein kinase, is involved in plant response to high salinity and osmotic stresses and ABA signaling. PLoS One 9:e95642

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Liu G, Zhao G et al (2014c) Characterization of a wheat R2R3-MYB transcription factor gene, TaMYB19, involved in enhanced abiotic stresses in Arabidopsis. Plant Cell Physiol 55:1802–1812

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Zhang L, Xia C et al (2015a) The novel wheat transcription factor TaNAC47 enhances multiple abiotic stress tolerances in transgenic plants. Front Plant Sci 6:1174

    PubMed  Google Scholar 

  • Zhang L, Zhang L, Xia C et al (2015b) A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis. Physiol Plant 153:538–554

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Liu X, Wu L et al (2015c) The SsDREB transcription factor from the succulent halophyte Suaeda salsa enhances abiotic stress tolerance in transgenic tobacco. Int J Genomics 2015:875497

    PubMed  PubMed Central  Google Scholar 

  • Zhao J, Sun Z, Zheng J et al (2009) Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol Biol 69:661–674

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Yang X, Pei S et al (2016) The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis. Gene 586:158–169

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Liu G, Meng X et al (2013) A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes. Plant Mol Biol 82:303–320

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Zhang Z, Tang Q et al (2011) Enhanced V-ATPase activity contributes to the improved salt tolerance of transgenic tobacco plants overexpressing vacuolar Na+/H+ antiporter AtNHX1. Biotechnol Lett 33:375–380

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Jin Y, Yoo C, Lin X (2013) CYCLIN H; 1 regulates drought stress responses and blue light-induced stomatal opening by inhibiting reactive oxygen species accumulation in Arabidopsis. Plant Physiol 162:1030–1041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou L, Wang NN, Gong SY et al (2015) Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants. Plant Physiol Biochem 96:311–320

    Article  PubMed  CAS  Google Scholar 

  • Zhu N, Cheng S, Liu X et al (2015) The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci 236:146–156

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Yan J, Liu W et al (2016) Phosphorylation of a NAC transcription factor by ZmCCaMK regulates abscisic acid-induced antioxidant defense in maize. Plant Physiol 171:1651–1664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou J-J, Wei F-J, Wang C et al (2010) Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol 154:1232–1243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou J-J, Li X-D, Ratnasekera D et al (2015) Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell 27:1445–1460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgment

The financial support from the Council of Scientific and Industrial Research (CSIR), Government of India, through the project [38(1387)/14/EMR-II] to Dr. Aryadeep Roychoudhury is gratefully acknowledged. The authors are thankful to University Grants Commission (UGC), Government of India, for providing Senior Research Fellowship to Saikat Paul.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paul, S., Roychoudhury, A. (2018). Transgenic Plants for Improved Salinity and Drought Tolerance. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-90650-8_7

Download citation

Publish with us

Policies and ethics