Skip to main content

Anti-Fibrotic Therapies from Other Organs: What the Gut Can Learn from the Liver, Skin, Lung and Heart

  • Chapter
  • First Online:
  • 627 Accesses

Abstract

Fibrosis and dysregulated healing can affect nearly every organ system in the body. Often fibrosis represents a final common pathway to end organ failure, and there is evidence for substantial conservation of the mechanisms of fibrosis across many or all of these organs. Given the significant and pervasive impact of fibrosis there is a clear need for effective anti-fibrotic therapies. The study of these mechanisms and therapies is a robust area of research and allows for exciting collaboration. The conservation of mechanisms effectively posits any therapy that demonstrates efficacy in one organ or model of fibrosis as being a potentially viable option in other organs as well. In this chapter we review the current state of anti-fibrotic therapies in organs other the intestine. There are exciting pipeline agents under investigation in multiple organs including the liver, lungs, kidney, skin, and heart. This chapter focuses on agents that are currently in clinical trials and have demonstrated promise as potentially reaching mainstream use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Duffield JS. Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest. 2014;124(6):2299–306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Elpek GO. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: an update. World J Gastroenterol. 2014;20(23):7260–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(4):549–74.

    Article  PubMed  CAS  Google Scholar 

  4. Speca S, Giusti I, Rieder F, Latella G. Cellular and molecular mechanisms of intestinal fibrosis. World J Gastroenterol. 2012;18(28):3635–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Todd NW, Luzina IG, Atamas SP. Molecular and cellular mechanisms of pulmonary fibrosis. Fibrogenesis Tissue Repair. 2012;5(1):11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest. 2007;117(3):524–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18(7):1028–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Friedman SL, Sheppard D, Duffield JS, Violette S. Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med. 2013;5(167):167sr1.

    Article  CAS  PubMed  Google Scholar 

  10. Bettenworth D, Rieder F. Medical therapy of stricturing Crohn’s disease: what the gut can learn from other organs - a systematic review. Fibrogenesis Tissue Repair. 2014;7(1):5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yoon YJ, Friedman SL, Lee YA. Antifibrotic therapies: where are we now? Semin Liver Dis. 2016;36(1):87–98.

    Article  PubMed  CAS  Google Scholar 

  12. Nanthakumar CB, Hatley RJ, Lemma S, Gauldie J, Marshall RP, Macdonald SJ. Dissecting fibrosis: therapeutic insights from the small-molecule toolbox. Nat Rev Drug Discov. 2015;14(10):693–720.

    Article  PubMed  CAS  Google Scholar 

  13. Gadaleta RM, van Erpecum KJ, Oldenburg B, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut. 2011;60(4):463–72.

    Article  PubMed  CAS  Google Scholar 

  14. Fiorucci S, Antonelli E, Rizzo G, et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology. 2004;127(5):1497–512.

    Article  PubMed  CAS  Google Scholar 

  15. Verbeke L, Farre R, Trebicka J, et al. Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology. 2014;59(6):2286–98.

    Article  PubMed  CAS  Google Scholar 

  16. Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology. 2008;48(5):1632–43.

    Article  PubMed  CAS  Google Scholar 

  17. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385(9972):956–65.

    Article  PubMed  CAS  Google Scholar 

  18. Trauner M, Claudel T, Fickert P, Moustafa T, Wagner M. Bile acids as regulators of hepatic lipid and glucose metabolism. Dig Dis. 2010;28(1):220–4.

    Article  PubMed  CAS  Google Scholar 

  19. Karpen SJ. Do therapeutic bile acids hit the sweet spot of glucose metabolism in NAFLD? Gastroenterology. 2013;145(3):508–10.

    Article  PubMed  Google Scholar 

  20. Bishop-Bailey D, Walsh DT, Warner TD. Expression and activation of the farnesoid X receptor in the vasculature. Proc Natl Acad Sci U S A. 2004;101(10):3668–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Huber RM, Murphy K, Miao B, et al. Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters. Gene. 2002;290(1-2):35–43.

    Article  PubMed  CAS  Google Scholar 

  22. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89(1):147–91.

    Article  PubMed  CAS  Google Scholar 

  23. Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol. 2009;183(10):6251–61.

    Article  PubMed  CAS  Google Scholar 

  24. Moon HJ, Finney J, Ronnebaum T, Mure M. Human lysyl oxidase-like 2. Bioorg Chem. 2014;57:231–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Barry-Hamilton V, Spangler R, Marshall D, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med. 2010;16(9):1009–17.

    Article  CAS  PubMed  Google Scholar 

  26. Yang J, Savvatis K, Kang JS, et al. Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat Commun. 2016;7:13710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Meissner EG, McLaughlin M, Matthews L, et al. Simtuzumab treatment of advanced liver fibrosis in HIV and HCV-infected adults: results of a 6-month open-label safety trial. Liver Int. 2016;36(12):1783–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Raghu G, Brown KK, Collard HR, et al. Efficacy of simtuzumab versus placebo in patients with idiopathic pulmonary fibrosis: a randomised, double-blind, controlled, phase 2 trial. Lancet Respir Med. 2017;5(1):22–32.

    Article  CAS  PubMed  Google Scholar 

  29. Mihos CG, Pineda AM, Santana O. Cardiovascular effects of statins, beyond lipid-lowering properties. Pharmacol Res. 2014;88:12–9.

    Article  PubMed  CAS  Google Scholar 

  30. Schierwagen R, Uschner FE, Magdaleno F, Klein S, Trebicka J. Rationale for the use of statins in liver disease. Am J Physiol Gastrointest Liver Physiol. 2017;312(5):G407–12.

    Article  PubMed  Google Scholar 

  31. Klein S, Klosel J, Schierwagen R, et al. Atorvastatin inhibits proliferation and apoptosis, but induces senescence in hepatic myofibroblasts and thereby attenuates hepatic fibrosis in rats. Lab Investig. 2012;92(10):1440–50.

    Article  PubMed  CAS  Google Scholar 

  32. Marrone G, Maeso-Diaz R, Garcia-Cardena G, et al. KLF2 exerts antifibrotic and vasoprotective effects in cirrhotic rat livers: behind the molecular mechanisms of statins. Gut. 2015;64(9):1434–43.

    Article  PubMed  CAS  Google Scholar 

  33. Trebicka J, Hennenberg M, Odenthal M, et al. Atorvastatin attenuates hepatic fibrosis in rats after bile duct ligation via decreased turnover of hepatic stellate cells. J Hepatol. 2010;53(4):702–12.

    Article  PubMed  CAS  Google Scholar 

  34. Chong LW, Hsu YC, Lee TF, et al. Fluvastatin attenuates hepatic steatosis-induced fibrogenesis in rats through inhibiting paracrine effect of hepatocyte on hepatic stellate cells. BMC Gastroenterol. 2015;15:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Simon TG, King LY, Zheng H, Chung RT. Statin use is associated with a reduced risk of fibrosis progression in chronic hepatitis C. J Hepatol. 2015;62(1):18–23.

    Article  PubMed  CAS  Google Scholar 

  36. Watts KL, Sampson EM, Schultz GS, Spiteri MA. Simvastatin inhibits growth factor expression and modulates profibrogenic markers in lung fibroblasts. Am J Respir Cell Mol Biol. 2005;32(4):290–300.

    Article  PubMed  CAS  Google Scholar 

  37. Reddy R, Chahoud G, Mehta JL. Modulation of cardiovascular remodeling with statins: fact or fiction? Curr Vasc Pharmacol. 2005;3(1):69–79.

    Article  PubMed  CAS  Google Scholar 

  38. Abe Y, Murano M, Murano N, et al. Simvastatin attenuates intestinal fibrosis independent of the anti-inflammatory effect by promoting fibroblast/myofibroblast apoptosis in the regeneration/healing process from TNBS-induced colitis. Dig Dis Sci. 2012;57(2):335–44.

    Article  PubMed  CAS  Google Scholar 

  39. Ebrahimkhani MR, Oakley F, Murphy LB, et al. Stimulating healthy tissue regeneration by targeting the 5-HT(2)B receptor in chronic liver disease. Nat Med. 2011;17(12):1668–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mann DA, Oakley F. Serotonin paracrine signaling in tissue fibrosis. Biochim Biophys Acta. 2013;1832(7):905–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Dees C, Akhmetshina A, Zerr P, et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J Exp Med. 2011;208(5):961–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Janssen W, Schymura Y, Novoyatleva T, et al. 5-HT2B receptor antagonists inhibit fibrosis and protect from RV heart failure. Biomed Res Int. 2015;2015:438403.

    PubMed  PubMed Central  Google Scholar 

  43. Fabre A, Marchal-Somme J, Marchand-Adam S, et al. Modulation of bleomycin-induced lung fibrosis by serotonin receptor antagonists in mice. Eur Respir J. 2008;32(2):426–36.

    Article  PubMed  CAS  Google Scholar 

  44. Shenoy KT, Balakumaran LK, Mathew P, et al. Metadoxine versus placebo for the treatment of non-alcoholic steatohepatitis: a randomized controlled trial. J Clin Exp Hepatol. 2014;4(2):94–100.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gutierrez-Ruiz MC, Bucio L, Correa A, et al. Metadoxine prevents damage produced by ethanol and acetaldehyde in hepatocyte and hepatic stellate cells in culture. Pharmacol Res. 2001;44(5):431–6.

    Article  PubMed  CAS  Google Scholar 

  46. Arosio B, Santambrogio D, Gagliano N, Annoni G. Changes in expression of the albumin, fibronectin and type I procollagen genes in CCl4-induced liver fibrosis: effect of pyridoxol L,2-pyrrolidon-5 carboxylate. Pharmacol Toxicol. 1993;73(6):301–4.

    Article  PubMed  CAS  Google Scholar 

  47. Stidham RW, Guentner AS, Ruma JL, Govani SM, Waljee AK, Higgins PD. Intestinal dilation and platelet:albumin ratio are predictors of surgery in stricturing small bowel Crohn’s disease. Clin Gastroenterol Hepatol. 2016;14(8):1112–9. e1112

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jia LX, Qi GM, Liu O, et al. Inhibition of platelet activation by clopidogrel prevents hypertension-induced cardiac inflammation and fibrosis. Cardiovasc Drugs Ther. 2013;27(6):521–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Savi P, Zachayus JL, Delesque-Touchard N, et al. The active metabolite of Clopidogrel disrupts P2Y12 receptor oligomers and partitions them out of lipid rafts. Proc Natl Acad Sci U S A. 2006;103(29):11069–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995;146(1):3–15.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ, Gores GJ. Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology. 2002;123(4):1323–30.

    Article  PubMed  CAS  Google Scholar 

  53. Canbay A, Feldstein A, Baskin-Bey E, Bronk SF, Gores GJ. The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J Pharmacol Exp Ther. 2004;308(3):1191–6.

    Article  PubMed  CAS  Google Scholar 

  54. Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med. 2003;9(3):347–51.

    Article  PubMed  CAS  Google Scholar 

  55. Thornberry NA. Caspases: key mediators of apoptosis. Chem Biol. 1998;5(5):R97–103.

    Article  PubMed  CAS  Google Scholar 

  56. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281(5381):1312–6.

    Article  PubMed  CAS  Google Scholar 

  57. Hoglen NC, Hirakawa BP, Fisher CD, et al. Characterization of the caspase inhibitor IDN-1965 in a model of apoptosis-associated liver injury. J Pharmacol Exp Ther. 2001;297(2):811–8.

    PubMed  CAS  Google Scholar 

  58. Natori S, Higuchi H, Contreras P, Gores GJ. The caspase inhibitor IDN-6556 prevents caspase activation and apoptosis in sinusoidal endothelial cells during liver preservation injury. Liver Transpl. 2003;9(3):278–84.

    Article  PubMed  Google Scholar 

  59. Barreyro FJ, Holod S, Finocchietto PV, et al. The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int. 2015;35(3):953–66.

    Article  PubMed  CAS  Google Scholar 

  60. Valentino KL, Gutierrez M, Sanchez R, Winship MJ, Shapiro DA. First clinical trial of a novel caspase inhibitor: anti-apoptotic caspase inhibitor, IDN-6556, improves liver enzymes. Int J Clin Pharmacol Ther. 2003;41(10):441–9.

    Article  PubMed  CAS  Google Scholar 

  61. Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Gut. 2015;64(5):830–41.

    Article  PubMed  CAS  Google Scholar 

  62. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006;354(6):610–21.

    Article  PubMed  CAS  Google Scholar 

  63. Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology. 2014;147(3):577–94. e571

    Article  PubMed  CAS  Google Scholar 

  64. Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol. 2012;302(11):G1310–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Seki E, De Minicis S, Gwak GY, et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin Invest. 2009;119(7):1858–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Seki E, de Minicis S, Inokuchi S, et al. CCR2 promotes hepatic fibrosis in mice. Hepatology. 2009;50(1):185–97.

    Article  PubMed  CAS  Google Scholar 

  67. Braga TT, Correa-Costa M, Silva RC, et al. CCR2 contributes to the recruitment of monocytes and leads to kidney inflammation and fibrosis development. Inflammopharmacology. 2018;26:403.

    Article  PubMed  CAS  Google Scholar 

  68. Kitagawa K, Wada T, Furuichi K, et al. Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am J Pathol. 2004;165(1):237–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Gharaee-Kermani M, McCullumsmith RE, Charo IF, Kunkel SL, Phan SH. CC-chemokine receptor 2 required for bleomycin-induced pulmonary fibrosis. Cytokine. 2003;24(6):266–76.

    Article  PubMed  CAS  Google Scholar 

  70. Okuma T, Terasaki Y, Kaikita K, et al. C-C chemokine receptor 2 (CCR2) deficiency improves bleomycin-induced pulmonary fibrosis by attenuation of both macrophage infiltration and production of macrophage-derived matrix metalloproteinases. J Pathol. 2004;204(5):594–604.

    Article  PubMed  CAS  Google Scholar 

  71. Klibanov OM, Williams SH, Iler CA. Cenicriviroc, an orally active CCR5 antagonist for the potential treatment of HIV infection. Curr Opin Investig Drugs. 2010;11(8):940–50.

    PubMed  CAS  Google Scholar 

  72. Lalezari J, Gathe J, Brinson C, et al. Safety, efficacy, and pharmacokinetics of TBR-652, a CCR5/CCR2 antagonist, in HIV-1-infected, treatment-experienced, CCR5 antagonist-naive subjects. J Acquir Immune Defic Syndr. 2011;57(2):118–25.

    Article  PubMed  CAS  Google Scholar 

  73. Marier JF, Trinh M, Pheng LH, Palleja SM, Martin DE. Pharmacokinetics and pharmacodynamics of TBR-652, a novel CCR5 antagonist, in HIV-1-infected, antiretroviral treatment-experienced, CCR5 antagonist-naive patients. Antimicrob Agents Chemother. 2011;55(6):2768–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kagan RM, Johnson EP, Siaw MF, et al. Comparison of genotypic and phenotypic HIV type 1 tropism assay: results from the screening samples of cenicriviroc study 202, a randomized phase II trial in treatment-naive subjects. AIDS Res Hum Retrovir. 2014;30(2):151–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Thompson M, Saag M, DeJesus E, et al. A 48-week randomized phase 2b study evaluating cenicriviroc versus efavirenz in treatment-naive HIV-infected adults with C-C chemokine receptor type 5-tropic virus. AIDS. 2016;30(6):869–78.

    Article  PubMed  CAS  Google Scholar 

  76. Lefebvre E, Moyle G, Reshef R, et al. Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLoS One. 2016;11(6):e0158156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Friedman S, Sanyal A, Goodman Z, et al. Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR phase 2b study design. Contemp Clin Trials. 2016;47:356–65.

    Article  PubMed  Google Scholar 

  78. Di Lella S, Sundblad V, Cerliani JP, et al. When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry. 2011;50(37):7842–57.

    Article  PubMed  CAS  Google Scholar 

  79. Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential. Expert Rev Mol Med. 2008;10:e17.

    Article  PubMed  Google Scholar 

  80. Henderson NC, Sethi T. The regulation of inflammation by galectin-3. Immunol Rev. 2009;230(1):160–71.

    Article  PubMed  CAS  Google Scholar 

  81. Henderson NC, Mackinnon AC, Farnworth SL, et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A. 2006;103(13):5060–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Mackinnon AC, Gibbons MA, Farnworth SL, et al. Regulation of transforming growth factor-beta1-driven lung fibrosis by galectin-3. Am J Respir Crit Care Med. 2012;185(5):537–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Traber PG, Chou H, Zomer E, et al. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One. 2013;8(10):e75361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Harrison SA, Marri SR, Chalasani N, et al. Randomised clinical study: GR-MD-02, a galectin-3 inhibitor, vs. placebo in patients having non-alcoholic steatohepatitis with advanced fibrosis. Aliment Pharmacol Ther. 2016;44(11-12):1183–98.

    Article  PubMed  CAS  Google Scholar 

  85. Ahmadian M, Suh JM, Hah N, et al. PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med. 2013;19(5):557–66.

    Article  CAS  PubMed  Google Scholar 

  86. Fuchs CD, Traussnigg SA, Trauner M. Nuclear receptor modulation for the treatment of nonalcoholic fatty liver disease. Semin Liver Dis. 2016;36(1):69–86.

    Article  PubMed  CAS  Google Scholar 

  87. Kawaguchi K, Sakaida I, Tsuchiya M, Omori K, Takami T, Okita K. Pioglitazone prevents hepatic steatosis, fibrosis, and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient L-amino acid-defined diet. Biochem Biophys Res Commun. 2004;315(1):187–95.

    Article  PubMed  CAS  Google Scholar 

  88. Aoki Y, Maeno T, Aoyagi K, et al. Pioglitazone, a peroxisome proliferator-activated receptor gamma ligand, suppresses bleomycin-induced acute lung injury and fibrosis. Respiration. 2009;77(3):311–9.

    Article  PubMed  CAS  Google Scholar 

  89. Chalasani NP, Sanyal AJ, Kowdley KV, et al. Pioglitazone versus vitamin E versus placebo for the treatment of non-diabetic patients with non-alcoholic steatohepatitis: PIVENS trial design. Contemp Clin Trials. 2009;30(1):88–96.

    Article  PubMed  CAS  Google Scholar 

  90. Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362(18):1675–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Belfort R, Harrison SA, Brown K, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med. 2006;355(22):2297–307.

    Article  PubMed  CAS  Google Scholar 

  92. Aithal GP, Thomas JA, Kaye PV, et al. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology. 2008;135(4):1176–84.

    Article  PubMed  CAS  Google Scholar 

  93. Wu M, Melichian DS, Chang E, Warner-Blankenship M, Ghosh AK, Varga J. Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic responses through peroxisome proliferator-activated receptor-gamma. Am J Pathol. 2009;174(2):519–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Samah M, El-Aidy Ael R, Tawfik MK, Ewais MM. Evaluation of the antifibrotic effect of fenofibrate and rosiglitazone on bleomycin-induced pulmonary fibrosis in rats. Eur J Pharmacol. 2012;689(1-3):186–93.

    Article  PubMed  CAS  Google Scholar 

  95. Ratziu V, Charlotte F, Bernhardt C, et al. Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology. 2010;51(2):445–53.

    Article  PubMed  CAS  Google Scholar 

  96. Ratziu V, Giral P, Jacqueminet S, et al. Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroenterology. 2008;135(1):100–10.

    Article  PubMed  CAS  Google Scholar 

  97. McHutchison J, Goodman Z, Patel K, et al. Farglitazar lacks antifibrotic activity in patients with chronic hepatitis C infection. Gastroenterology. 2010;138(4):1365–1373, 1373.e1-2.

    Article  PubMed  Google Scholar 

  98. Cariou B, Hanf R, Lambert-Porcheron S, et al. Dual peroxisome proliferator-activated receptor alpha/delta agonist GFT505 improves hepatic and peripheral insulin sensitivity in abdominally obese subjects. Diabetes Care. 2013;36(10):2923–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Cariou B, Zair Y, Staels B, Bruckert E. Effects of the new dual PPAR alpha/delta agonist GFT505 on lipid and glucose homeostasis in abdominally obese patients with combined dyslipidemia or impaired glucose metabolism. Diabetes Care. 2011;34(9):2008–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Staels B, Rubenstrunk A, Noel B, et al. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology. 2013;58(6):1941–52.

    Article  PubMed  CAS  Google Scholar 

  101. Ratziu V, Harrison SA, Francque S, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150(5):1147–59. e1145

    Article  PubMed  CAS  Google Scholar 

  102. Bertin B, Dubuquoy L, Colombel JF, Desreumaux P. PPAR-gamma in ulcerative colitis: a novel target for intervention. Curr Drug Targets. 2013;14(12):1501–7.

    Article  PubMed  CAS  Google Scholar 

  103. Koo JB, Nam MO, Jung Y, et al. Anti-fibrogenic effect of PPAR-gamma agonists in human intestinal myofibroblasts. BMC Gastroenterol. 2017;17(1):73.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Meyer KC, Decker CA. Role of pirfenidone in the management of pulmonary fibrosis. Ther Clin Risk Manag. 2017;13:427–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Iyer SN, Wild JS, Schiedt MJ, Hyde DM, Margolin SB, Giri SN. Dietary intake of pirfenidone ameliorates bleomycin-induced lung fibrosis in hamsters. J Lab Clin Med. 1995;125(6):779–85.

    PubMed  CAS  Google Scholar 

  106. Iyer SN, Gurujeyalakshmi G, Giri SN. Effects of pirfenidone on transforming growth factor-beta gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther. 1999;291(1):367–73.

    PubMed  CAS  Google Scholar 

  107. Iyer SN, Gurujeyalakshmi G, Giri SN. Effects of pirfenidone on procollagen gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther. 1999;289(1):211–8.

    PubMed  CAS  Google Scholar 

  108. Conte E, Gili E, Fagone E, Fruciano M, Iemmolo M, Vancheri C. Effect of pirfenidone on proliferation, TGF-beta-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts. Eur J Pharm Sci. 2014;58:13–9.

    Article  PubMed  CAS  Google Scholar 

  109. Nakayama S, Mukae H, Sakamoto N, et al. Pirfenidone inhibits the expression of HSP47 in TGF-beta1-stimulated human lung fibroblasts. Life Sci. 2008;82(3-4):210–7.

    Article  PubMed  CAS  Google Scholar 

  110. Taniguchi H, Ebina M, Kondoh Y, et al. Pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J. 2010;35(4):821–9.

    Article  PubMed  CAS  Google Scholar 

  111. Noble PW, Albera C, Bradford WZ, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011;377(9779):1760–9.

    Article  CAS  PubMed  Google Scholar 

  112. King TE Jr, Bradford WZ, Castro-Bernardini S, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083–92.

    Article  PubMed  CAS  Google Scholar 

  113. Noble PW, Albera C, Bradford WZ, et al. Pirfenidone for idiopathic pulmonary fibrosis: analysis of pooled data from three multinational phase 3 trials. Eur Respir J. 2016;47(1):243–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Costabel U, Albera C, Bradford WZ, et al. Analysis of lung function and survival in RECAP: an open-label extension study of pirfenidone in patients with idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis. 2014;31(3):198–205.

    PubMed  Google Scholar 

  115. Ogura T, Azuma A, Inoue Y, et al. All-case post-marketing surveillance of 1371 patients treated with pirfenidone for idiopathic pulmonary fibrosis. Respir Investig. 2015;53(5):232–41.

    Article  PubMed  Google Scholar 

  116. Lancaster L, Albera C, Bradford WZ, et al. Safety of pirfenidone in patients with idiopathic pulmonary fibrosis: integrated analysis of cumulative data from 5 clinical trials. BMJ Open Respir Res. 2016;3(1):e000105.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lopez-de la Mora DA, Sanchez-Roque C, Montoya-Buelna M, et al. Role and new insights of pirfenidone in fibrotic diseases. Int J Med Sci. 2015;12(11):840–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Garcia L, Hernandez I, Sandoval A, et al. Pirfenidone effectively reverses experimental liver fibrosis. J Hepatol. 2002;37(6):797–805.

    Article  PubMed  CAS  Google Scholar 

  119. Flores-Contreras L, Sandoval-Rodriguez AS, Mena-Enriquez MG, et al. Treatment with pirfenidone for two years decreases fibrosis, cytokine levels and enhances CB2 gene expression in patients with chronic hepatitis C. BMC Gastroenterol. 2014;14:131.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Sharma K, Ix JH, Mathew AV, et al. Pirfenidone for diabetic nephropathy. J Am Soc Nephrol. 2011;22(6):1144–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Liu Y, Wu J, Li Z, Luo Y, Zeng F, Shi S. Tolerability and pharmacokinetics of hydronidone, an antifibrotic agent for hepatic fibrosis, after single and multiple doses in healthy subjects: an open-label, randomized, dose-escalating, first-in-human study. Eur J Drug Metab Pharmacokinet. 2017;42(1):37–48.

    Article  PubMed  CAS  Google Scholar 

  122. Fujimoto H, Kobayashi T, Azuma A. Idiopathic pulmonary fibrosis: treatment and prognosis. Clin Med Insights Circ Respir Pulm Med. 2015;9(Suppl 1):179–85.

    PubMed  Google Scholar 

  123. Hilberg F, Roth GJ, Krssak M, et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res. 2008;68(12):4774–82.

    Article  PubMed  CAS  Google Scholar 

  124. Richeldi L, Costabel U, Selman M, et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med. 2011;365(12):1079–87.

    Article  PubMed  CAS  Google Scholar 

  125. Richeldi L, du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2071–82.

    Article  CAS  PubMed  Google Scholar 

  126. Ozturk Akcora B, Storm G, Prakash J, Bansal R. Tyrosine kinase inhibitor BIBF1120 ameliorates inflammation, angiogenesis and fibrosis in CCl4-induced liver fibrogenesis mouse model. Sci Rep. 2017;7:44545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Oda K, Matsunaga T, Sennari K, Yatera K. Colitis associated with nintedanib therapy for idiopathic pulmonary fibrosis (IPF). Intern Med. 2017;56(10):1267–8.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Daniels CE, Lasky JA, Limper AH, et al. Imatinib treatment for idiopathic pulmonary fibrosis: randomized placebo-controlled trial results. Am J Respir Crit Care Med. 2010;181(6):604–10.

    Article  PubMed  CAS  Google Scholar 

  129. Spiera RF, Gordon JK, Mersten JN, et al. Imatinib mesylate (Gleevec) in the treatment of diffuse cutaneous systemic sclerosis: results of a 1-year, phase IIa, single-arm, open-label clinical trial. Ann Rheum Dis. 2011;70(6):1003–9.

    Article  PubMed  CAS  Google Scholar 

  130. Prey S, Ezzedine K, Doussau A, et al. Imatinib mesylate in scleroderma-associated diffuse skin fibrosis: a phase II multicentre randomized double-blinded controlled trial. Br J Dermatol. 2012;167(5):1138–44.

    Article  PubMed  CAS  Google Scholar 

  131. Das J, Chen P, Norris D, et al. 2-aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J Med Chem. 2006;49(23):6819–32.

    Google Scholar 

  132. Akhmetshina A, Dees C, Pileckyte M, et al. Dual inhibition of c-abl and PDGF receptor signaling by dasatinib and nilotinib for the treatment of dermal fibrosis. FASEB J. 2008;22(7):2214–22.

    Article  CAS  PubMed  Google Scholar 

  133. Yung YC, Stoddard NC, Chun J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res. 2014;55(7):1192–214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Kihara Y, Mizuno H, Chun J. Lysophospholipid receptors in drug discovery. Exp Cell Res. 2015;333(2):171–7.

    Article  CAS  PubMed  Google Scholar 

  135. Tager AM, LaCamera P, Shea BS, et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med. 2008;14(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  136. Tokumura A, Carbone LD, Yoshioka Y, et al. Elevated serum levels of arachidonoyl-lysophosphatidic acid and sphingosine 1-phosphate in systemic sclerosis. Int J Med Sci. 2009;6(4):168–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Swaney JS, Chapman C, Correa LD, et al. A novel, orally active LPA(1) receptor antagonist inhibits lung fibrosis in the mouse bleomycin model. Br J Pharmacol. 2010;160(7):1699–713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Castelino FV, Seiders J, Bain G, et al. Amelioration of dermal fibrosis by genetic deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma. Arthritis Rheum. 2011;63(5):1405–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Khanna DDCP, Jagerschmidt, A, Jasson, M, Distler, O, Allanore, Y. SAR100842, an antagonist of lysophosphatidic acid receptor 1, as a potential treatment for patients with systemic sclerosis: results from a phase 2a study. ACR/ARHP Annual Meeting 2014. 2014.

    Google Scholar 

  140. Yun CC, Kumar A. Diverse roles of LPA signaling in the intestinal epithelium. Exp Cell Res. 2015;333(2):201–7.

    Article  CAS  PubMed  Google Scholar 

  141. Powell JD, Pollizzi KN, Heikamp EB, Horton MR. Regulation of immune responses by mTOR. Annu Rev Immunol. 2012;30:39–68.

    Article  CAS  PubMed  Google Scholar 

  142. Ong PS, Wang LZ, Dai X, Tseng SH, Loo SJ, Sethi G. Judicious toggling of mTOR activity to combat insulin resistance and cancer: current evidence and perspectives. Front Pharmacol. 2016;7:395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Korfhagen TR, Le Cras TD, Davidson CR, et al. Rapamycin prevents transforming growth factor-alpha-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2009;41(5):562–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Kramer S, Wang-Rosenke Y, Scholl V, et al. Low-dose mTOR inhibition by rapamycin attenuates progression in anti-thy1-induced chronic glomerulosclerosis of the rat. Am J Physiol Renal Physiol. 2008;294(2):F440–9.

    Article  CAS  PubMed  Google Scholar 

  145. Lloberas N, Cruzado JM, Franquesa M, et al. Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J Am Soc Nephrol. 2006;17(5):1395–404.

    Article  CAS  PubMed  Google Scholar 

  146. Neef M, Ledermann M, Saegesser H, Schneider V, Reichen J. Low-dose oral rapamycin treatment reduces fibrogenesis, improves liver function, and prolongs survival in rats with established liver cirrhosis. J Hepatol. 2006;45(6):786–96.

    Article  CAS  PubMed  Google Scholar 

  147. Wu MJ, Wen MC, Chiu YT, Chiou YY, Shu KH, Tang MJ. Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis. Kidney Int. 2006;69(11):2029–36.

    Article  CAS  PubMed  Google Scholar 

  148. Son MK, Ryu YL, Jung KH, et al. HS-173, a novel PI3K inhibitor, attenuates the activation of hepatic stellate cells in liver fibrosis. Sci Rep. 2013;3:3470.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Knight SD, Adams ND, Burgess JL, et al. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med Chem Lett. 2010;1(1):39–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Mercer PF, Woodcock HV, Eley JD, et al. Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF. Thorax. 2016;71(8):701–11.

    Article  PubMed  Google Scholar 

  151. Marz AM, Fabian AK, Kozany C, Bracher A, Hausch F. Large FK506-binding proteins shape the pharmacology of rapamycin. Mol Cell Biol. 2013;33(7):1357–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Mutalib M, Borrelli O, Blackstock S, et al. The use of sirolimus (rapamycin) in the management of refractory inflammatory bowel disease in children. J Crohns Colitis. 2014;8(12):1730–4.

    Article  PubMed  Google Scholar 

  153. Yang J, Zhao X, Patel A, et al. Rapamycin inhibition of mTOR reduces levels of the Na+/H+ exchanger 3 in intestines of mice and humans, leading to diarrhea. Gastroenterology. 2015;149(1):151–62.

    Article  PubMed  CAS  Google Scholar 

  154. Sampson LL, Davis AK, Grogg MW, Zheng Y. mTOR disruption causes intestinal epithelial cell defects and intestinal atrophy postinjury in mice. FASEB J. 2016;30(3):1263–75.

    Article  CAS  PubMed  Google Scholar 

  155. Boers-Doets CB, Raber-Durlacher JE, Treister NS, et al. Mammalian target of rapamycin inhibitor-associated stomatitis. Future Oncol. 2013;9(12):1883–92.

    Article  CAS  PubMed  Google Scholar 

  156. Sonis S, Treister N, Chawla S, Demetri G, Haluska F. Preliminary characterization of oral lesions associated with inhibitors of mammalian target of rapamycin in cancer patients. Cancer. 2010;116(1):210–5.

    CAS  PubMed  Google Scholar 

  157. Groetzner J, Kur F, Spelsberg F, et al. Airway anastomosis complications in de novo lung transplantation with sirolimus-based immunosuppression. J Heart Lung Transplant. 2004;23(5):632–8.

    Article  PubMed  Google Scholar 

  158. Kahn D, Spearman CW, Mall A, et al. Effect of rapamycin on the healing of the bile duct. Transplant Proc. 2005;37(2):832–3.

    Article  CAS  PubMed  Google Scholar 

  159. Kahn D, Spearman CW, Mall A, et al. The effect of rapamycin on the healing of the ureteric anastomosis and wound healing. Transplant Proc. 2005;37(2):830–1.

    Article  CAS  PubMed  Google Scholar 

  160. Kuper MA, Scholzl N, Traub F, et al. Everolimus interferes with the inflammatory phase of healing in experimental colonic anastomoses. J Surg Res. 2011;167(1):158–65.

    Article  CAS  PubMed  Google Scholar 

  161. Kuper MA, Trutschel S, Weinreich J, Konigsrainer A, Beckert S. Growth hormone abolishes the negative effects of everolimus on intestinal wound healing. World J Gastroenterol. 2016;22(17):4321–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. van der Vliet JA, Willems MC, de Man BM, Lomme RM, Hendriks T. Everolimus interferes with healing of experimental intestinal anastomoses. Transplantation. 2006;82(11):1477–83.

    Article  CAS  PubMed  Google Scholar 

  163. Willems MC, van der Vliet JA, de Man BM, van der Laak JA, Lomme RM, Hendriks T. Persistent effects of everolimus on strength of experimental wounds in intestine and fascia. Wound Repair Regen. 2010;18(1):98–104.

    Article  PubMed  Google Scholar 

  164. Molinari M, Al-Saif F, Ryan EA, et al. Sirolimus-induced ulceration of the small bowel in islet transplant recipients: report of two cases. Am J Transplant. 2005;5(11):2799–804.

    Article  PubMed  Google Scholar 

  165. Devries JG, Collier RC, Niezgoda JA, Sanicola S, Simanonok JP. Impaired lower extremity wound healing secondary to sirolimus after kidney transplantation. J Am Col Certif Wound Spec. 2009;1(3):86–91.

    PubMed  PubMed Central  Google Scholar 

  166. Hugl B, Lhotta K, Ensinger C, et al. Colonic perforation associated with leukocytoclastic vasculitis caused by sirolimus toxicity following renal transplantation. Transpl Int. 2006;19(5):430–1.

    Article  PubMed  Google Scholar 

  167. Stitham J, Midgett C, Martin KA, Hwa J. Prostacyclin: an inflammatory paradox. Front Pharmacol. 2011;2:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Zhu Y, Liu Y, Zhou W, et al. A prostacyclin analogue, iloprost, protects from bleomycin-induced pulmonary fibrosis in mice. Respir Res. 2010;11:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Stratton R, Shiwen X, Martini G, et al. Iloprost suppresses connective tissue growth factor production in fibroblasts and in the skin of scleroderma patients. J Clin Invest. 2001;108(2):241–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Chung L, Fiorentino D. A pilot trial of treprostinil for the treatment and prevention of digital ulcers in patients with systemic sclerosis. J Am Acad Dermatol. 2006;54(5):880–2.

    Article  PubMed  Google Scholar 

  171. Takenaka M, Machida N, Ida N, Satoh N, Kurumatani H, Yamane Y. Effect of beraprost sodium (BPS) in a new rat partial unilateral ureteral obstruction model. Prostaglandins Leukot Essent Fatty Acids. 2009;80(5-6):263–7.

    Article  CAS  PubMed  Google Scholar 

  172. Nakamoto H, Fujita T, Origasa H, et al. A multinational phase IIb/III trial of beraprost sodium, an orally active prostacyclin analogue, in patients with primary glomerular disease or nephrosclerosis (CASSIOPEIR trial), rationale and study design. BMC Nephrol. 2014;15:153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Walt RP. Misoprostol for the treatment of peptic ulcer and antiinflammatory-drug-induced gastroduodenal ulceration. N Engl J Med. 1992;327(22):1575–80.

    Article  CAS  PubMed  Google Scholar 

  174. Soffer EE, Launspach J. Effect of misoprostol on postprandial intestinal motility and orocecal transit time in humans. Dig Dis Sci. 1993;38(5):851–5.

    Article  CAS  PubMed  Google Scholar 

  175. Soffer EE, Metcalf A, Launspach J. Misoprostol is effective treatment for patients with severe chronic constipation. Dig Dis Sci. 1994;39(5):929–33.

    Article  PubMed  CAS  Google Scholar 

  176. Roarty TP, Weber F, Soykan I, McCallum RW. Misoprostol in the treatment of chronic refractory constipation: results of a long-term open label trial. Aliment Pharmacol Ther. 1997;11(6):1059–66.

    Article  PubMed  CAS  Google Scholar 

  177. Demirci F, Somunkiran A, Gul OK, Demiraran Y, Ozdemir I, Gul OB. Does postoperative misoprostol use induce intestinal motility? A prospective randomised double-blind trial. Aust N Z J Obstet Gynaecol. 2007;47(5):410–4.

    Article  PubMed  Google Scholar 

  178. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.

    Article  PubMed  CAS  Google Scholar 

  179. Breuss JM, Gallo J, DeLisser HM, et al. Expression of the beta 6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodeling. J Cell Sci. 1995;108(Pt 6):2241–51.

    PubMed  CAS  Google Scholar 

  180. Breuss JM, Gillett N, Lu L, Sheppard D, Pytela R. Restricted distribution of integrin beta 6 mRNA in primate epithelial tissues. J Histochem Cytochem. 1993;41(10):1521–7.

    Article  PubMed  CAS  Google Scholar 

  181. Munger JS, Huang X, Kawakatsu H, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell. 1999;96(3):319–28.

    Article  PubMed  CAS  Google Scholar 

  182. Wang B, Dolinski BM, Kikuchi N, et al. Role of alphavbeta6 integrin in acute biliary fibrosis. Hepatology. 2007;46(5):1404–12.

    Article  PubMed  CAS  Google Scholar 

  183. Vaidya B, Patel R, Muth A, Gupta V. Exploitation of novel molecular targets to treat idiopathic pulmonary fibrosis: a drug discovery perspective. Curr Med Chem. 2017;24:2439.

    Article  PubMed  CAS  Google Scholar 

  184. Weinreb PH, Simon KJ, Rayhorn P, et al. Function-blocking integrin alphavbeta6 monoclonal antibodies: distinct ligand-mimetic and nonligand-mimetic classes. J Biol Chem. 2004;279(17):17875–87.

    Article  PubMed  CAS  Google Scholar 

  185. Davenport AP, Hyndman KA, Dhaun N, et al. Endothelin. Pharmacol Rev. 2016;68(2):357–418.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Kurihara H, Yoshizumi M, Sugiyama T, et al. Transforming growth factor-beta stimulates the expression of endothelin mRNA by vascular endothelial cells. Biochem Biophys Res Commun. 1989;159(3):1435–40.

    Article  PubMed  CAS  Google Scholar 

  187. Yoshizumi M, Kurihara H, Morita T, et al. Interleukin 1 increases the production of endothelin-1 by cultured endothelial cells. Biochem Biophys Res Commun. 1990;166(1):324–9.

    Article  PubMed  CAS  Google Scholar 

  188. Orisio S, Morigi M, Zoja C, Perico N, Remuzzi G. Turnour necrosis factor stimulates endothelin-1 gene expression in cultured bovine endothelial cells. Mediat Inflamm. 1992;1(4):263–6.

    Article  CAS  Google Scholar 

  189. Komers R, Plotkin H. Dual inhibition of renin-angiotensin-aldosterone system and endothelin-1 in treatment of chronic kidney disease. Am J Physiol Regul Integr Comp Physiol. 2016;310(10):R877–84.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Georgianos PI, Agarwal R. Endothelin A receptor antagonists in diabetic kidney disease. Curr Opin Nephrol Hypertens. 2017;26:338.

    Article  PubMed  CAS  Google Scholar 

  191. Russo I, Frangogiannis NG. Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol. 2016;90:84–93.

    Article  PubMed  CAS  Google Scholar 

  192. Widyantoro B, Emoto N, Nakayama K, et al. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation. 2010;121(22):2407–18.

    Article  CAS  PubMed  Google Scholar 

  193. Uguccioni M, Pulsatelli L, Grigolo B, et al. Endothelin-1 in idiopathic pulmonary fibrosis. J Clin Pathol. 1995;48(4):330–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Jain R, Shaul PW, Borok Z, Willis BC. Endothelin-1 induces alveolar epithelial-mesenchymal transition through endothelin type A receptor-mediated production of TGF-beta1. Am J Respir Cell Mol Biol. 2007;37(1):38–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Breu V, Ertel SI, Roux S, Clozel M. The pharmacology of bosentan. Expert Opin Investig Drugs. 1998;7(7):1173–92.

    Article  PubMed  CAS  Google Scholar 

  196. Clozel M, Breu V, Gray GA, et al. Pharmacological characterization of bosentan, a new potent orally active nonpeptide endothelin receptor antagonist. J Pharmacol Exp Ther. 1994;270(1):228–35.

    PubMed  CAS  Google Scholar 

  197. Park SH, Saleh D, Giaid A, Michel RP. Increased endothelin-1 in bleomycin-induced pulmonary fibrosis and the effect of an endothelin receptor antagonist. Am J Respir Crit Care Med. 1997;156(2 Pt 1):600–8.

    Article  CAS  PubMed  Google Scholar 

  198. King TE Jr, Brown KK, Raghu G, et al. BUILD-3: a randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;184(1):92–9.

    Article  PubMed  Google Scholar 

  199. King TE Jr, Behr J, Brown KK, et al. BUILD-1: a randomized placebo-controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2008;177(1):75–81.

    Article  PubMed  CAS  Google Scholar 

  200. Seibold JR, Denton CP, Furst DE, et al. Randomized, prospective, placebo-controlled trial of bosentan in interstitial lung disease secondary to systemic sclerosis. Arthritis Rheum. 2010;62(7):2101–8.

    PubMed  CAS  Google Scholar 

  201. Raghu G, Behr J, Brown KK, et al. Treatment of idiopathic pulmonary fibrosis with ambrisentan: a parallel, randomized trial. Ann Intern Med. 2013;158(9):641–9.

    Article  PubMed  Google Scholar 

  202. Raghu G, Million-Rousseau R, Morganti A, Perchenet L, Behr J, MUSIC Study Group. Macitentan for the treatment of idiopathic pulmonary fibrosis: the randomised controlled MUSIC trial. Eur Respir J. 2013;42(6):1622–32.

    Article  PubMed  CAS  Google Scholar 

  203. Okamoto T, Koda M, Miyoshi K, et al. Antifibrotic effects of ambrisentan, an endothelin-A receptor antagonist, in a non-alcoholic steatohepatitis mouse model. World J Hepatol. 2016;8(22):933–41.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Feng HQ, Weymouth ND, Rockey DC. Endothelin antagonism in portal hypertensive mice: implications for endothelin receptor-specific signaling in liver disease. Am J Physiol Gastrointest Liver Physiol. 2009;297(1):G27–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Kohan DE, Pritchett Y, Molitch M, et al. Addition of atrasentan to renin-angiotensin system blockade reduces albuminuria in diabetic nephropathy. J Am Soc Nephrol. 2011;22(4):763–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Korn JH, Mayes M, Matucci Cerinic M, et al. Digital ulcers in systemic sclerosis: prevention by treatment with bosentan, an oral endothelin receptor antagonist. Arthritis Rheum. 2004;50(12):3985–93.

    Article  PubMed  CAS  Google Scholar 

  207. Claudino RF, Leite DF, Bento AF, Chichorro JG, Calixto JB, Rae GA. Potential role for ET-2 acting through ETA receptors in experimental colitis in mice. Inflamm Res. 2017;66(2):141–55.

    Article  PubMed  CAS  Google Scholar 

  208. Fichtner-Feigl S, Strober W, Geissler EK, Schlitt HJ. Cytokines mediating the induction of chronic colitis and colitis-associated fibrosis. Mucosal Immunol. 2008;1(Suppl 1):S24–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Hershey GK. IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol. 2003;111(4):677–90; quiz 691; quiz 691.

    Article  CAS  PubMed  Google Scholar 

  210. Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A. IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med. 2006;12(1):99–106.

    Article  CAS  PubMed  Google Scholar 

  211. Fichtner-Feigl S, Young CA, Kitani A, Geissler EK, Schlitt HJ, Strober W. IL-13 signaling via IL-13R alpha2 induces major downstream fibrogenic factors mediating fibrosis in chronic TNBS colitis. Gastroenterology. 2008;135(6):2003–13, 2013.e1-7.

    Article  CAS  PubMed  Google Scholar 

  212. Corren J, Lemanske RF, Hanania NA, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011;365(12):1088–98.

    Article  PubMed  CAS  Google Scholar 

  213. Danese S, Rudzinski J, Brandt W, et al. Tralokinumab for moderate-to-severe UC: a randomised, double-blind, placebo-controlled, phase IIa study. Gut. 2015;64(2):243–9.

    Article  PubMed  CAS  Google Scholar 

  214. Cicha I, Goppelt-Struebe M. Connective tissue growth factor: context-dependent functions and mechanisms of regulation. Biofactors. 2009;35(2):200–8.

    Article  PubMed  CAS  Google Scholar 

  215. Huang G, Brigstock DR. Regulation of hepatic stellate cells by connective tissue growth factor. Front Biosci. 2012;17:2495–507.

    Article  CAS  Google Scholar 

  216. Lipson KE, Wong C, Teng Y, Spong S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012;5(Suppl 1):S24.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Shi C, Li G, Tong Y, Deng Y, Fan J. Role of CTGF gene promoter methylation in the development of hepatic fibrosis. Am J Transl Res. 2016;8(1):125–32.

    PubMed  PubMed Central  CAS  Google Scholar 

  218. Bickelhaupt S, Erbel C, Timke C, et al. Effects of CTGF blockade on attenuation and reversal of radiation-induced pulmonary fibrosis. J Natl Cancer Inst. 2017;109(8). https://doi.org/10.1093/jnci/djw339

  219. Makino K, Makino T, Stawski L, Lipson KE, Leask A, Trojanowska M. Anti-connective tissue growth factor (CTGF/CCN2) monoclonal antibody attenuates skin fibrosis in mice models of systemic sclerosis. Arthritis Res Ther. 2017;19(1):134.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Raghu G, Scholand MB, de Andrade J, et al. FG-3019 anti-connective tissue growth factor monoclonal antibody: results of an open-label clinical trial in idiopathic pulmonary fibrosis. Eur Respir J. 2016;47(5):1481–91.

    Article  PubMed  Google Scholar 

  221. Adler SG, Schwartz S, Williams ME, et al. Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin J Am Soc Nephrol. 2010;5(8):1420–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Steel DM, Whitehead AS. The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol Today. 1994;15(2):81–8.

    Article  PubMed  CAS  Google Scholar 

  223. Pilling D, Tucker NM, Gomer RH. Aggregated IgG inhibits the differentiation of human fibrocytes. J Leukoc Biol. 2006;79(6):1242–51.

    Article  PubMed  CAS  Google Scholar 

  224. Pilling D, Buckley CD, Salmon M, Gomer RH. Inhibition of fibrocyte differentiation by serum amyloid P. J Immunol. 2003;171(10):5537–46.

    Article  PubMed  CAS  Google Scholar 

  225. Haudek SB, Xia Y, Huebener P, et al. Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci U S A. 2006;103(48):18284–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Naik-Mathuria B, Pilling D, Crawford JR, et al. Serum amyloid P inhibits dermal wound healing. Wound Repair Regen. 2008;16(2):266–73.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Garnier M, Mailleux AA, Besnard V, et al. Serum amyloid P contained in alveolar fluid from patients with acute respiratory distress syndrome mediates the inhibition of monocyte differentiation into fibrocyte. Crit Care Med. 2016;44(7):e563–73.

    Article  PubMed  CAS  Google Scholar 

  228. Murray LA, Chen Q, Kramer MS, et al. TGF-beta driven lung fibrosis is macrophage dependent and blocked by serum amyloid P. Int J Biochem Cell Biol. 2011;43(1):154–62.

    Article  PubMed  CAS  Google Scholar 

  229. Pilling D, Roife D, Wang M, et al. Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J Immunol. 2007;179(6):4035–44.

    Article  PubMed  CAS  Google Scholar 

  230. Murray LA, Kramer MS, Hesson DP, et al. Serum amyloid P ameliorates radiation-induced oral mucositis and fibrosis. Fibrogenesis Tissue Repair. 2010;3:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Dillingh MR, van den Blink B, Moerland M, et al. Recombinant human serum amyloid P in healthy volunteers and patients with pulmonary fibrosis. Pulm Pharmacol Ther. 2013;26(6):672–6.

    Article  PubMed  CAS  Google Scholar 

  232. van den Blink B, Dillingh MR, Ginns LC, et al. Recombinant human pentraxin-2 therapy in patients with idiopathic pulmonary fibrosis: safety, pharmacokinetics and exploratory efficacy. Eur Respir J. 2016;47(3):889–97.

    Article  PubMed  CAS  Google Scholar 

  233. Rastogi R, Geng X, Li F, Ding Y. NOX activation by subunit interaction and underlying mechanisms in disease. Front Cell Neurosci. 2016;10:301.

    PubMed  Google Scholar 

  234. Cui W, Matsuno K, Iwata K, et al. NOX1/nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase promotes proliferation of stellate cells and aggravates liver fibrosis induced by bile duct ligation. Hepatology. 2011;54(3):949–58.

    Article  PubMed  CAS  Google Scholar 

  235. Jiang JX, Venugopal S, Serizawa N, et al. Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo. Gastroenterology. 2010;139(4):1375–84.

    Article  PubMed  CAS  Google Scholar 

  236. Nieto N, Friedman SL, Cederbaum AI. Cytochrome P450 2E1-derived reactive oxygen species mediate paracrine stimulation of collagen I protein synthesis by hepatic stellate cells. J Biol Chem. 2002;277(12):9853–64.

    Article  PubMed  CAS  Google Scholar 

  237. Paik YH, Iwaisako K, Seki E, et al. The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice. Hepatology. 2011;53(5):1730–41.

    Article  PubMed  CAS  Google Scholar 

  238. Hecker L, Logsdon NJ, Kurundkar D, et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med. 2014;6(231):231ra247.

    Article  CAS  Google Scholar 

  239. Hecker L, Vittal R, Jones T, et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med. 2009;15(9):1077–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Amara N, Goven D, Prost F, Muloway R, Crestani B, Boczkowski J. NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGFbeta1-induced fibroblast differentiation into myofibroblasts. Thorax. 2010;65(8):733–8.

    Article  PubMed  Google Scholar 

  241. Barnes JL, Gorin Y. Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases. Kidney Int. 2011;79(9):944–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Jha JC, Gray SP, Barit D, et al. Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol. 2014;25(6):1237–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Aoyama T, Paik YH, Watanabe S, et al. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology. 2012;56(6):2316–27.

    Article  PubMed  CAS  Google Scholar 

  244. Laleu B, Gaggini F, Orchard M, et al. First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J Med Chem. 2010;53(21):7715–30.

    Article  PubMed  CAS  Google Scholar 

  245. Jiang JX, Chen X, Serizawa N, et al. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic Biol Med. 2012;53(2):289–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Sedeek M, Gutsol A, Montezano AC, et al. Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of Type 2 diabetes. Clin Sci (Lond). 2013;124(3):191–202.

    Article  CAS  Google Scholar 

  247. Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta. 2013;1830(8):4117–29.

    Article  PubMed  CAS  Google Scholar 

  248. Zafarullah M, Li WQ, Sylvester J, Ahmad M. Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci. 2003;60(1):6–20.

    Article  PubMed  CAS  Google Scholar 

  249. Myllarniemi M, Kaarteenaho R. Pharmacological treatment of idiopathic pulmonary fibrosis - preclinical and clinical studies of pirfenidone, nintedanib, and N-acetylcysteine. Eur Clin Respir J. 2015;2:26385.

    Article  Google Scholar 

  250. Demedts M, Behr J, Buhl R, et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2005;353(21):2229–42.

    Article  PubMed  CAS  Google Scholar 

  251. Idiopathic Pulmonary Fibrosis Clinical Research Network, Martinez FJ, de Andrade JA, Anstrom KJ, King TE Jr, Raghu G. Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2093–101.

    Article  CAS  Google Scholar 

  252. Kato M, Marumo M, Nakayama J, Matsumoto M, Yabe-Nishimura C, Kamata T. The ROS-generating oxidase Nox1 is required for epithelial restitution following colitis. Exp Anim. 2016;65(3):197–205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Onorato JM, Jenkins AJ, Thorpe SR, Baynes JW. Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. Mechanism of action of pyridoxamine. J Biol Chem. 2000;275(28):21177–84.

    Article  CAS  PubMed  Google Scholar 

  254. Voziyan PA, Metz TO, Baynes JW, Hudson BG. A post-Amadori inhibitor pyridoxamine also inhibits chemical modification of proteins by scavenging carbonyl intermediates of carbohydrate and lipid degradation. J Biol Chem. 2002;277(5):3397–403.

    Article  CAS  PubMed  Google Scholar 

  255. Degenhardt TP, Alderson NL, Arrington DD, et al. Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int. 2002;61(3):939–50.

    Article  CAS  PubMed  Google Scholar 

  256. Williams ME, Bolton WK, Khalifah RG, Degenhardt TP, Schotzinger RJ, McGill JB. Effects of pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy. Am J Nephrol. 2007;27(6):605–14.

    Article  CAS  PubMed  Google Scholar 

  257. Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunol Rev. 2009;228(1):273–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Pesu M, Laurence A, Kishore N, Zwillich SH, Chan G, O'Shea JJ. Therapeutic targeting of Janus kinases. Immunol Rev. 2008;223:132–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Dees C, Tomcik M, Palumbo-Zerr K, et al. JAK-2 as a novel mediator of the profibrotic effects of transforming growth factor beta in systemic sclerosis. Arthritis Rheum. 2012;64(9):3006–15.

    Article  CAS  PubMed  Google Scholar 

  260. Fridman JS, Scherle PA, Collins R, et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J Immunol. 2010;184(9):5298–307.

    Article  CAS  PubMed  Google Scholar 

  261. Flamant M, Rigaill J, Paul S, Roblin X. Advances in the development of Janus kinase inhibitors in inflammatory bowel disease: future prospects. Drugs. 2017;77:1057.

    Article  CAS  PubMed  Google Scholar 

  262. Sahin H, Wasmuth HE. Chemokines in tissue fibrosis. Biochim Biophys Acta. 2013;1832(7):1041–8.

    Article  CAS  PubMed  Google Scholar 

  263. Mirolo M, Fabbri M, Sironi M, et al. Impact of the anti-inflammatory agent bindarit on the chemokinome: selective inhibition of the monocyte chemotactic proteins. Eur Cytokine Netw. 2008;19(3):119–22.

    PubMed  Google Scholar 

  264. Zhu XY, Chade AR, Krier JD, et al. The chemokine monocyte chemoattractant protein-1 contributes to renal dysfunction in swine renovascular hypertension. J Hypertens. 2009;27(10):2063–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Sabounjian L, Graham P, Wu L, et al. A first-in-patient, multicenter, double-blind, 2-arm, placebo-controlled, randomized safety and tolerability study of a novel oral drug candidate, CTP-499, in chronic kidney disease. Clin Pharmacol Drug Dev. 2016;5(4):314–25.

    Article  CAS  PubMed  Google Scholar 

  266. Tang X, Bridson G, Ke J, et al. Quantitative analyses of CTP-499 and five major metabolites by core-structure analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;963:1–9.

    Article  CAS  PubMed  Google Scholar 

  267. Braman V, Graham P, Cheng C, et al. A randomized phase I evaluation of CTP-499, a novel deuterium-containing drug candidate for diabetic nephropathy. Clin Pharmacol Drug Dev. 2013;2(1):53–66.

    Article  CAS  PubMed  Google Scholar 

  268. Lin SL, Chen YM, Chiang WC, Tsai TJ, Chen WY. Pentoxifylline: a potential therapy for chronic kidney disease. Nephrology (Carlton). 2004;9(4):198–204.

    Article  CAS  Google Scholar 

  269. Aslanian AHK, West K, Bridson G, Wu L. CTP-499, a novel drug for the treatment of chronic kidney disease, ameliorates renal fibrosis and inflammation in vivo. ASN 2012 Poster. 2012.

    Google Scholar 

  270. Peterson TC, Peterson MR, Raoul JM. The effect of pentoxifylline and its metabolite-1 on inflammation and fibrosis in the TNBS model of colitis. Eur J Pharmacol. 2011;662(1-3):47–54.

    Article  CAS  PubMed  Google Scholar 

  271. Hamama S, Gilbert-Sirieix M, Vozenin MC, Delanian S. Radiation-induced enteropathy: molecular basis of pentoxifylline-vitamin E anti-fibrotic effect involved TGF-beta1 cascade inhibition. Radiother Oncol. 2012;105(3):305–12.

    Article  CAS  PubMed  Google Scholar 

  272. Ezquerro IJ, Lasarte JJ, Dotor J, et al. A synthetic peptide from transforming growth factor beta type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury. Cytokine. 2003;22(1-2):12–20.

    Article  CAS  PubMed  Google Scholar 

  273. Santiago B, Gutierrez-Canas I, Dotor J, et al. Topical application of a peptide inhibitor of transforming growth factor-beta1 ameliorates bleomycin-induced skin fibrosis. J Invest Dermatol. 2005;125(3):450–5.

    Article  CAS  PubMed  Google Scholar 

  274. Hermida N, Lopez B, Gonzalez A, et al. A synthetic peptide from transforming growth factor-beta1 type III receptor prevents myocardial fibrosis in spontaneously hypertensive rats. Cardiovasc Res. 2009;81(3):601–9.

    Article  CAS  PubMed  Google Scholar 

  275. Baltanas A, Miguel-Carrasco JL, San Jose G, et al. A synthetic peptide from transforming growth factor-beta(1) type III receptor inhibits NADPH oxidase and prevents oxidative stress in the kidney of spontaneously hypertensive rats. Antioxid Redox Signal. 2013;19(14):1607–18.

    Article  CAS  PubMed  Google Scholar 

  276. Trachtman H, Fervenza FC, Gipson DS, et al. A phase 1, single-dose study of fresolimumab, an anti-TGF-beta antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 2011;79(11):1236–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  277. Rice LM, Padilla CM, McLaughlin SR, et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Invest. 2015;125(7):2795–807.

    Article  PubMed  PubMed Central  Google Scholar 

  278. Voelker J, Berg PH, Sheetz M, et al. Anti-TGF-beta1 antibody therapy in patients with diabetic nephropathy. J Am Soc Nephrol. 2017;28(3):953–62.

    Article  PubMed  Google Scholar 

  279. Ruchelman AL, Man HW, Zhang W, et al. Isosteric analogs of lenalidomide and pomalidomide: synthesis and biological activity. Bioorg Med Chem Lett. 2013;23(1):360–5.

    Article  CAS  PubMed  Google Scholar 

  280. Tseng S, Pak G, Washenik K, Pomeranz MK, Shupack JL. Rediscovering thalidomide: a review of its mechanism of action, side effects, and potential uses. J Am Acad Dermatol. 1996;35(6):969–79.

    Article  CAS  PubMed  Google Scholar 

  281. Choe JY, Jung HJ, Park KY, et al. Anti-fibrotic effect of thalidomide through inhibiting TGF-beta-induced ERK1/2 pathways in bleomycin-induced lung fibrosis in mice. Inflamm Res. 2010;59(3):177–88.

    Article  CAS  PubMed  Google Scholar 

  282. Moreira AL, Sampaio EP, Zmuidzinas A, Frindt P, Smith KA, Kaplan G. Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med. 1993;177(6):1675–80.

    Article  CAS  PubMed  Google Scholar 

  283. Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G. Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med. 1991;173(3):699–703.

    Article  CAS  PubMed  Google Scholar 

  284. Tabata C, Tabata R, Kadokawa Y, et al. Thalidomide prevents bleomycin-induced pulmonary fibrosis in mice. J Immunol. 2007;179(1):708–14.

    Article  CAS  PubMed  Google Scholar 

  285. Horton MR, Santopietro V, Mathew L, et al. Thalidomide for the treatment of cough in idiopathic pulmonary fibrosis: a randomized trial. Ann Intern Med. 2012;157(6):398–406.

    Article  PubMed  Google Scholar 

  286. Weingartner S, Zerr P, Tomcik M, et al. Pomalidomide is effective for prevention and treatment of experimental skin fibrosis. Ann Rheum Dis. 2012;71(11):1895–9.

    Article  CAS  PubMed  Google Scholar 

  287. Yang C, Singh P, Singh H, Le ML, El-Matary W. Systematic review: thalidomide and thalidomide analogues for treatment of inflammatory bowel disease. Aliment Pharmacol Ther. 2015;41(11):1079–93.

    Article  CAS  PubMed  Google Scholar 

  288. Bjork P, Bjork A, Vogl T, et al. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides. PLoS Biol. 2009;7(4):e97.

    Article  CAS  PubMed  Google Scholar 

  289. Stenstrom M, Nyhlen HC, Torngren M, et al. Paquinimod reduces skin fibrosis in tight skin 1 mice, an experimental model of systemic sclerosis. J Dermatol Sci. 2016;83(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  290. Kerkhoff C, Voss A, Scholzen TE, Averill MM, Zanker KS, Bornfeldt KE. Novel insights into the role of S100A8/A9 in skin biology. Exp Dermatol. 2012;21(11):822–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  291. Fan Z, Guan J. Antifibrotic therapies to control cardiac fibrosis. Biomater Res. 2016;20:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  292. Fang L, Murphy AJ, Dart AM. A clinical perspective of anti-fibrotic therapies for cardiovascular disease. Front Pharmacol. 2017;8:186.

    PubMed  PubMed Central  Google Scholar 

  293. Edgley AJ, Krum H, Kelly DJ. Targeting fibrosis for the treatment of heart failure: a role for transforming growth factor-beta. Cardiovasc Ther. 2012;30(1):e30–40.

    Article  CAS  PubMed  Google Scholar 

  294. Ruster C, Wolf G. Angiotensin II as a morphogenic cytokine stimulating renal fibrogenesis. J Am Soc Nephrol. 2011;22(7):1189–99.

    Article  CAS  PubMed  Google Scholar 

  295. Couluris M, Kinder BW, Xu P, Gross-King M, Krischer J, Panos RJ. Treatment of idiopathic pulmonary fibrosis with losartan: a pilot project. Lung. 2012;190(5):523–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  296. Wei HS, Li DG, Lu HM, et al. Effects of AT1 receptor antagonist, losartan, on rat hepatic fibrosis induced by CCl(4). World J Gastroenterol. 2000;6(4):540–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  297. Corey KE, Shah N, Misdraji J, et al. The effect of angiotensin-blocking agents on liver fibrosis in patients with hepatitis C. Liver Int. 2009;29(5):748–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Wengrower D, Zanninelli G, Pappo O, et al. Prevention of fibrosis in experimental colitis by captopril: the role of tgf-beta1. Inflamm Bowel Dis. 2004;10(5):536–45.

    Article  PubMed  Google Scholar 

  299. Wengrower D, Zanninelli G, Latella G, et al. Losartan reduces trinitrobenzene sulphonic acid-induced colorectal fibrosis in rats. Can J Gastroenterol. 2012;26(1):33–9.

    Article  PubMed  PubMed Central  Google Scholar 

  300. Euler-Taimor G, Heger J. The complex pattern of SMAD signaling in the cardiovascular system. Cardiovasc Res. 2006;69(1):15–25.

    Article  PubMed  CAS  Google Scholar 

  301. Engebretsen KV, Skardal K, Bjornstad S, et al. Attenuated development of cardiac fibrosis in left ventricular pressure overload by SM16, an orally active inhibitor of ALK5. J Mol Cell Cardiol. 2014;76:148–57.

    Article  PubMed  CAS  Google Scholar 

  302. Frantz S, Hu K, Adamek A, et al. Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res Cardiol. 2008;103(5):485–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. R. Higgins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steiner, C.A., Higgins, P.D.R. (2018). Anti-Fibrotic Therapies from Other Organs: What the Gut Can Learn from the Liver, Skin, Lung and Heart. In: Rieder, F. (eds) Fibrostenotic Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-90578-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90578-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90577-8

  • Online ISBN: 978-3-319-90578-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics