Skip to main content

Fibrosis in Ulcerative Colitis

  • Chapter
  • First Online:
Fibrostenotic Inflammatory Bowel Disease

Abstract

Intestinal fibrosis is a classic complication in Inflammatory Bowel Diseases where chronic inflammation and abnormal tissue repair together lead to a compromised bowel function. Although fibrosis and stricture formation are acknowledged features of Crohn’s disease courses, these complications remain poorly studied in ulcerative colitis (UC). The relevance of this topic has long been ignored, despite the well-known prevalence of stenosis in UC, its clinical impact in motility and the importance of assessing stricture malignancy.

Fibrosis in UC is now perceived as a dynamic and reversible process. However, still no proper antifibrotic therapy exist, mainly due to the very limited pathophysiological insights.

This chapter aims to review the current knowledge about fibrosis development in UC, outlining disease basic concepts, epidemiology, histopathologic features and clinical consequences.

Overview of fibrosis in Ulcerative colitis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geboes K. What histologic features best differentiate Crohn’s disease from ulcerative colitis? Inflamm Bowel Dis. 2008;14(Suppl 2):S168–9.

    Article  PubMed  Google Scholar 

  2. Danese S, Fiocchi C. Ulcerative colitis. N Engl J Med. 2011;365(18):1713–25.

    Article  CAS  PubMed  Google Scholar 

  3. Burisch J, Munkholm P. The epidemiology of inflammatory bowel disease. Scand J Gastroenterol. 2015;50(8):942–51.

    Article  PubMed  Google Scholar 

  4. Whitlow CB. Ulcerative proctitis. Clin Colon Rectal Surg. 2004;17(1):21–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Conrad K, Roggenbuck D, Laass MW. Diagnosis and classification of ulcerative colitis. Autoimmun Rev. 2014;13(4-5):463–6.

    Article  CAS  PubMed  Google Scholar 

  6. Feuerstein JD, Cheifetz AS. Ulcerative colitis: epidemiology, diagnosis, and management. Mayo Clin Proc. 2014;89(11):1553–63.

    Article  PubMed  Google Scholar 

  7. Kornbluth A, Sachar DB, Practice Parameters Committee of the American College of Gastroenterology. Ulcerative colitis practice guidelines in adults: American College of Gastroenterology, Practice Parameters Committee. Am J Gastroenterol. 2010;105(3):501–23; quiz 524.

    Article  Google Scholar 

  8. Cosnes J, et al. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology. 2011;140(6):1785–94.

    Article  PubMed  Google Scholar 

  9. Langan RC, et al. Ulcerative colitis: diagnosis and treatment. Am Fam Physician. 2007;76(9):1323–30.

    PubMed  Google Scholar 

  10. Latella G, et al. Can we prevent, reduce or reverse intestinal fibrosis in IBD? Eur Rev Med Pharmacol Sci. 2013;17(10):1283–304.

    PubMed  CAS  Google Scholar 

  11. Rothfuss KS, Stange EF, Herrlinger KR. Extraintestinal manifestations and complications in inflammatory bowel diseases. World J Gastroenterol. 2006;12(30):4819–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Levine JS, Burakoff R. Extraintestinal manifestations of inflammatory bowel disease. Gastroenterol Hepatol. 2011;7(4):235–41.

    Google Scholar 

  13. Johnson LA, et al. Novel Rho/MRTF/SRF inhibitors block matrix-stiffness and TGF-β–induced fibrogenesis in human colonic myofibroblasts. Inflamm Bowel Dis. 2014;20(1):154–65.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Molodecky NA, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46–54 e42; quiz e30.

    Article  Google Scholar 

  15. Ponder A, Long MD. A clinical review of recent findings in the epidemiology of inflammatory bowel disease. Clin Epidemiol. 2013;5:237–47.

    PubMed  PubMed Central  Google Scholar 

  16. Takahashi H, et al. Second peak in the distribution of age at onset of ulcerative colitis in relation to smoking cessation. J Gastroenterol Hepatol. 2014;29(8):1603–8.

    Article  PubMed  Google Scholar 

  17. Latella G, Rieder F. Intestinal fibrosis: ready to be reversed. Curr Opin Gastroenterol. 2017;33(4):239–45.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gumaste V, Sachar DB, Greenstein AJ. Benign and malignant colorectal strictures in ulcerative colitis. Gut. 1992;33(7):938–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rogler G. Pathogenesis of strictures in ulcerative colitis: a field to explore. Digestion. 2011;84(1):10–1.

    Article  PubMed  Google Scholar 

  20. Yamagata M, et al. Submucosal fibrosis and basic-fibroblast growth factor-positive neutrophils correlate with colonic stenosis in cases of ulcerative colitis. Digestion. 2011;84(1):12–21.

    Article  CAS  PubMed  Google Scholar 

  21. Ordás I, et al. Ulcerative colitis. Lancet. 2012;380(9853):1606–19.

    Article  PubMed  Google Scholar 

  22. Latella G, et al. Results of the 4th scientific workshop of the ECCO (I): pathophysiology of intestinal fibrosis in IBD. J Crohns Colitis. 2014;8(10):1147–65.

    Article  PubMed  Google Scholar 

  23. Spehlmann ME, et al. Epidemiology of inflammatory bowel disease in a German twin cohort: results of a nationwide study. Inflamm Bowel Dis. 2008;14(7):968–76.

    Article  PubMed  Google Scholar 

  24. Taurog JD, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180(6):2359–64.

    Article  CAS  PubMed  Google Scholar 

  25. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474(7351):307–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rieder F, Fiocchi C. Intestinal fibrosis in IBD—a dynamic, multifactorial process. Nat Rev Gastroenterol Hepatol. 2009;6(4):228–35.

    Article  CAS  PubMed  Google Scholar 

  27. Ippolito C, et al. Fibrotic and vascular remodelling of colonic wall in patients with active ulcerative colitis. J Crohns Colitis. 2016;10(10):1194–204.

    Article  PubMed  Google Scholar 

  28. Latella G, Rieder F. Time to look underneath the surface: ulcerative colitis-associated fibrosis. J Crohns Colitis. 2015;9(11):941–2.

    Article  PubMed  Google Scholar 

  29. de Bruyn JR, et al. Development of fibrosis in acute and longstanding ulcerative colitis. J Crohns Colitis. 2015;9(11):966–72.

    Article  PubMed  Google Scholar 

  30. Manetti M, et al. Telocytes are reduced during fibrotic remodelling of the colonic wall in ulcerative colitis. J Cell Mol Med. 2015;19(1):62–73.

    Article  PubMed  Google Scholar 

  31. Maul J, Zeitz M. Ulcerative colitis: immune function, tissue fibrosis and current therapeutic considerations. Langenbeck’s Arch Surg. 2012;397(1):1–10.

    Article  Google Scholar 

  32. Torres J, et al. Ulcerative colitis as a progressive disease: the forgotten evidence. Inflamm Bowel Dis. 2012;18(7):1356–63.

    Article  PubMed  Google Scholar 

  33. Gordon IO, et al. Fibrosis in ulcerative colitis: mechanisms, features, and consequences of a neglected problem. Inflamm Bowel Dis. 2014;20(11):2198–206.

    Article  PubMed  Google Scholar 

  34. Rieder F, et al. Wound healing and fibrosis in intestinal disease. Gut. 2007;56(1):130–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bettenworth D, Rieder F. Pathogenesis of intestinal fibrosis in inflammatory bowel disease and perspectives for therapeutic implication. Dig Dis. 2017;35(1-2):25–31.

    Article  PubMed  Google Scholar 

  36. Speca S, et al. Cellular and molecular mechanisms of intestinal fibrosis. World J Gastroenterol. 2012;18(28):3635–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Latella G, et al. Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand J Gastroenterol. 2015;50(1):53–65.

    Article  CAS  PubMed  Google Scholar 

  39. Johnson LA, et al. Intestinal fibrosis is reduced by early elimination of inflammation in a mouse model of IBD: impact of a “Top-Down” approach to intestinal fibrosis in mice. Inflamm Bowel Dis. 2012;18(3):460–71.

    Article  PubMed  Google Scholar 

  40. Heller F, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005;129(2):550–64.

    Article  CAS  PubMed  Google Scholar 

  41. Fonseca-Camarillo G, et al. Interleukin 17 gene and protein expression are increased in patients with ulcerative colitis. Inflamm Bowel Dis. 2011;17(10):E135–6.

    Article  PubMed  Google Scholar 

  42. Sponheim J, et al. Inflammatory bowel disease-associated interleukin-33 is preferentially expressed in ulceration-associated myofibroblasts. Am J Pathol. 2010;177(6):2804–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lawrance IC, Maxwell L, Doe W. Altered response of intestinal mucosal fibroblasts to profibrogenic cytokines in inflammatory bowel disease. Inflamm Bowel Dis. 2001;7(3):226–36.

    Article  CAS  PubMed  Google Scholar 

  44. Simmons JG, et al. IGF-I and TGF-beta1 have distinct effects on phenotype and proliferation of intestinal fibroblasts. Am J Physiol Gastrointest Liver Physiol. 2002;283(3):G809–18.

    Article  CAS  PubMed  Google Scholar 

  45. Theiss AL, et al. Tumor necrosis factor (TNF) alpha increases collagen accumulation and proliferation in intestinal myofibroblasts via TNF receptor 2. J Biol Chem. 2005;280(43):36099–109.

    Article  CAS  PubMed  Google Scholar 

  46. Hormi K, Lehy T. Transforming growth factor-alpha in vivo stimulates epithelial cell proliferation in digestive tissues of suckling rats. Gut. 1996;39(4):532–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kumagai S, et al. Platelet-derived growth factor and its receptors are expressed in areas of both active inflammation and active fibrosis in inflammatory bowel disease. Tohoku J Exp Med. 2001;195(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  48. Rieder F, et al. Intestinal fibrosis and liver fibrosis: consequences of chronic inflammation or independent pathophysiology? Inflamm Intest Dis. 2016;1(1):41–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Andoh A, et al. Intestinal subepithelial myofibroblasts in inflammatory bowel diseases. J Gastroenterol. 2002;37(Suppl 14):33–7.

    Article  CAS  PubMed  Google Scholar 

  50. Fiocchi C, Lund PK. Themes in fibrosis and gastrointestinal inflammation. Am J Physiol Gastrointest Liver Physiol. 2011;300(5):G677–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rieder F, Fiocchi C. Intestinal fibrosis in inflammatory bowel disease - current knowledge and future perspectives. J Crohns Colitis. 2008;2(4):279–90.

    Article  PubMed  Google Scholar 

  52. Bainbridge P. Wound healing and the role of fibroblasts. J Wound Care. 2013;22(8):407–8, 410-12.

    Article  CAS  PubMed  Google Scholar 

  53. Witte MB, Barbul A. General principles of wound healing. Surg Clin North Am. 1997;77(3):509–28.

    Article  CAS  PubMed  Google Scholar 

  54. Lawrance IC, Maxwell L, Doe W. Inflammation location, but not type, determines the increase in TGF-β1 and IGF-1 expression and collagen deposition in IBD intestine. Inflamm Bowel Dis. 2001;7(1):16–26.

    Article  CAS  PubMed  Google Scholar 

  55. Leeb SN, et al. Reduced migration of fibroblasts in inflammatory bowel disease: role of inflammatory mediators and focal adhesion kinase. Gastroenterology. 2003;125(5):1341–54.

    Article  CAS  PubMed  Google Scholar 

  56. Lawrance IC, et al. Cellular and molecular mediators of intestinal fibrosis. J Crohns Colitis. 2015;11(12):1491–503.

    PubMed Central  Google Scholar 

  57. Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology. 2008;47(4):1394–400.

    Article  CAS  PubMed  Google Scholar 

  58. Sonnenberg A, Genta RM. Epithelial dysplasia and cancer in IBD strictures. J Crohns Colitis. 2015;9(9):769–75.

    Article  PubMed  Google Scholar 

  59. Goulston SJ, McGovern VJ. The nature of benign strictures in ulcerative colitis. N Engl J Med. 1969;281(6):290–5.

    Article  CAS  PubMed  Google Scholar 

  60. Bassotti G, et al. Gastrointestinal motility disorders in inflammatory bowel diseases. World J Gastroenterol. 2014;20(1):37–44.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fukudo S. Role of corticotropin-releasing hormone in irritable bowel syndrome and intestinal inflammation. J Gastroenterol. 2007;42(Suppl 17):48–51.

    Article  CAS  PubMed  Google Scholar 

  62. Neunlist M, et al. Changes in chemical coding of myenteric neurones in ulcerative colitis. Gut. 2003;52(1):84–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vrees MD, et al. Abnormal motility in patients with ulcerative colitis: the role of inflammatory cytokines. Arch Surg. 2002;137(4):439–46.

    Article  CAS  PubMed  Google Scholar 

  64. Choi K, et al. Impaired integrity of DNA after recovery from inflammation causes persistent dysfunction of colonic smooth muscle. Gastroenterology. 2011;141(4):1293–301, 1301.e1-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. La JH, et al. Visceral hypersensitivity and altered colonic motility after subsidence of inflammation in a rat model of colitis. World J Gastroenterol. 2003;9(12):2791–5.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rieder F, Fiocchi C, Rogler G. Mechanisms, management, and treatment of fibrosis in patients with inflammatory bowel diseases. Gastroenterology. 2017;152(2):340–350.e6.

    Article  PubMed  Google Scholar 

  67. Trivedi PP, Jena GB. Role of alpha-lipoic acid in dextran sulfate sodium-induced ulcerative colitis in mice: studies on inflammation, oxidative stress, DNA damage and fibrosis. Food Chem Toxicol. 2013;59:339–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Magro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magro, F., António, T. (2018). Fibrosis in Ulcerative Colitis. In: Rieder, F. (eds) Fibrostenotic Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-90578-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90578-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90577-8

  • Online ISBN: 978-3-319-90578-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics