Skip to main content

Introduction to Fundamental Concepts

  • Chapter
  • First Online:
  • 544 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

This chapter discusses the importance of establishing a unified approach to electronics and electrochemistry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. F.A. Buot, Mesoscopic physics and nanoelectronics—Nanoscience and nanotechnology. Phys. Rep.—Review Section of Phys. Lett. 234(2–3), 73–174 (1993)

    CAS  Google Scholar 

  2. Y. Cui, Z.H. Zhong, D.L. Wang, W.U. Wang, C.M. Lieber, High performance silicon nanowire field effect transistors. Nano Lett. 3(2), 149–152 (2003)

    Article  CAS  Google Scholar 

  3. M.S. Gudiksen, L. J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature 415(6872), 617–620 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. W. Lu, C.M. Lieber, Nanoelectronics from the bottom up. Nat. Mater. 6(11), 841–850 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. A. Nitzan, M. A. Ratner, Electron transport in molecular wire junctions. Science 300(5624), 1384–1389 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. N.J. Tao, Electron transport in molecular junctions. Nat. Nanotechnol. 1(3), 173–181 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. J. Gabelli, G. Feve, J.M. Berroir, B. Placais, A. Cavanna, B. Etienne, Y. Jin, D.C. Glattli, Violation of Kirchhoff’s laws for a coherent RC circuit. Science 313(5786), 499–502 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. R. Landauer. Electrical resistance of disordered one-dimensional lattices. Philos. Mag. 21(172), 863–867 (1970)

    Article  CAS  Google Scholar 

  10. R. Landauer. Future evolution of computer. Phys. Today 23(7), 22 (1970)

    Google Scholar 

  11. Y. Gefen, Y. Imry, M.Y. Azbel, Quantum oscillations and the Aharonov-Bohm effect for parallel resistors. Phys. Rev. Lett. 52(2), 129–132 (1984)

    Article  Google Scholar 

  12. S. Ilani, L.A.K. Donev, M. Kindermann, P.L. McEuen, Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nat. Phys. 2, 687–691 (2006)

    Article  CAS  Google Scholar 

  13. M. Büttiker, A. Thomas, A. Prêtre, Mesoscopic capacitors. Phys. Lett. A 180(4–5), 364–369 (1993)

    Article  Google Scholar 

  14. L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Nonequilibrium Problems (W.A. Benjamin Inc, New York, 1962)

    Google Scholar 

  15. B.Q. Xu, X.Y. Xiao, X.M. Yang, L. Zang, N.J. Tao, Large gate modulation in the current of a room temperature single molecule transistor. J. Am. Chem. Soc. 127(8), 2386–2387 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. C.R. Arroyo, S. Tarkuc, R. Frisenda, J.S. Seldenthuis, C.H.M. Woerde, R. Eelkema, F.C. Grozema, H.S.J. van der Zant, Signatures of quantum interference effects on charge transport through a single benzene ring. Angew. Chem.-International Edition 52(11), 3152–3155 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. C. Li, A. Mishchenko, T. Wandlowski. Charge transport in single molecular junctions at the solid/liquid interface, in Unimolecular and Supramolecular Electronics Ii: Chemistry and Physics Meet at Metal-Molecule Interfaces, vol. 313, ed. by R.M. Metzger (2012), pp 121–188

    Google Scholar 

  18. L. Venkataraman, J.E. Klare, C. Nuckolls, M.S. Hybertsen, M.L. Steigerwald. Dependence of single-molecule junction conductance on molecular conformation. Nature 442(7105), 904–907 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. N.J. Tao, Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy. Phys. Rev. Lett. 76(21), 4066–4069 (1996)

    Article  CAS  PubMed  Google Scholar 

  20. W.C. Ribeiro, L.M. Goncalves, S. Liebana, M.I. Pividori, P.R. Bueno, Molecular conductance of double-stranded DNA evaluated by electrochemical capacitance spectroscopy. Nanoscale 8(16), 8931–8938 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. P.R. Bueno, J.J. Davis, Measuring quantum capacitance in energetically addressable molecular layers. Anal. Chem. 86, 1337–1341 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. P.R. Bueno, T.A. Benites, J.J. Davis. The mesoscopic electrochemistry of molecular junctions. Sci. Rep. 6, 18400 (2016)

    Google Scholar 

  23. Y.Q. Xue, M.A. Ratner, Theoretical principles of single-molecule electronics: A chemical and mesoscopic view. Int. J. Quantum Chem. 102(5), 911–924 (2005)

    Article  CAS  Google Scholar 

  24. A.M. Kuznetsov, J. Ulstrup, Electron Transfer in Chemistry and Biology. An Introduction to the Theory (Wiley, Chichester, 1999)

    Google Scholar 

  25. P.R. Bueno, J.J. Davis, G. Mizzon, Capacitance spectroscopy: A versatile approach to resolving the redox density of states and kinetics in redox-active self-assembled monolayers. J. Phys. Chem. C. 116(30), 8822–8829 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. P.R. Bueno, C. Gabrielli. Electrochemistry, Nanomaterials and Nanostructures (Springer, New York, 2008)

    Google Scholar 

  27. P.R. Bueno, F. Fabregat-Santiago, J.J Davis, Elucidating capacitance and resistance terms in confined electroactive molecular layers. Anal. Chem. 85(1), 411–417 (2013)

    Article  PubMed  CAS  Google Scholar 

  28. F.A. Gutierrez, F.C.B. Fernandes, G.A. Rivas, P.R. Bueno, Mesoscopic behaviour of multi-layered graphene: the meaning of supercapacitance revisited. Phys. Chem. Chem. Phys. 19(9), 6792–6806 (2017)

    Article  CAS  PubMed  Google Scholar 

  29. D.A. Miranda, P.R. Bueno, Density functional theory and an experimentally-designed energy functional of electron density. Phys. Chem. Chem. Phys. 18(37), 25984–25992 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  31. N. Agrait, A.L. Yeyati, J.M. van Ruitenbeek, Quantum properties of atomic-sized conductors. Phys. Rep.—Review Section of Phys. Lett. 377(2–3), 81–279 (2003)

    Article  CAS  Google Scholar 

  32. M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro. Density-functional method for nonequilibrium electron transport. Phys. Rev. B. 65(16) (2002)

    Google Scholar 

  33. A.P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996)

    Article  CAS  Google Scholar 

  34. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385), 2013–2016 (1998)

    Article  CAS  Google Scholar 

  35. W.C.W. Chan, S.M. Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385), 2016–2018 (1998)

    Article  CAS  PubMed  Google Scholar 

  36. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709), 538–544 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. C.W.J. Beenakker, H. Vanhouten, Quantum transport in semiconductor nanostructures. Solid State Phys. 44, 1–228 (1991)

    Google Scholar 

  38. T. Mokari, E. Rothenberg, I. Popov, R. Costi, U. Banin, Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304(5678), 1787–1790 (2004)

    Article  CAS  PubMed  Google Scholar 

  39. J. Lehr, J.R. Weeks, A. Santos, G.T. Feliciano, M.I.G. Nicholson, J.J. Davis, P.R. Bueno. Mapping the ionic fingerprints of molecular monolayers. Phys. Chem. Chem. Phys. (2017)

    Google Scholar 

  40. S. Luryi, Quantum capacitance devices. Appl. Phys. Lett. 52, 501 (1988)

    Article  Google Scholar 

  41. P.R. Bueno, G.T. Feliciano, J.J. Davis, Capacitance spectroscopy and density functional theory. Phys. Chem. Chem. Phys. 17, 9375–9382 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. A.L. Eckermann, D.J. Feld, J.A. Shaw, T.J. Meade, Electrochemistry of redox-active self-assembled monolayers. Coord. Chem. Rev. 254(15–16), 1769–1802 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. P.R. Bueno, D.A. Miranda, Conceptual density functional theory for electron transfer and transport in mesoscopic systems. Phys. Chem. Chem. Phys. 19(8), 6184–6195 (2017)

    Article  CAS  PubMed  Google Scholar 

  44. J. Cecchetto, F.C.B. Fernandes, R. Lopes, P.R. Bueno, The capacitive sensing of NS1 Flavivirus biomarker. Biosens. Bioelectron. 87, 949–956 (2017)

    Article  CAS  PubMed  Google Scholar 

  45. F.C.B. Fernandes, M.S. Goes, J.J. Davis, P.R. Bueno, Label free redox capacitive biosensing. Biosens. Bioelectron. 50, 437–440 (2013)

    Article  CAS  PubMed  Google Scholar 

  46. J. Lehr, F.C.B. Fernandes, P.R. Bueno, J.J. Davis, Label-free capacitive diagnostics: exploiting local redox probe state occupancy. Anal. Chem. 86(5), 2559–2564 (2014)

    Article  CAS  PubMed  Google Scholar 

  47. A. Santos, F.C. Carvalho, M.C. Roque-Barreira, P.R. Bueno, Impedance-derived electrochemical capacitance spectroscopy for the evaluation of lectin-glycoprotein binding affinity. Biosens. Bioelectron. 62, 102–105 (2014)

    Article  CAS  PubMed  Google Scholar 

  48. A. Santos, J.P. Piccoli, N.A. Santos, E.M. Cilli, P.R. Bueno, Redox-tagged peptide for capacitive diagnostic assays. Biosens. Bioelectron. 68, 281–287 (2015)

    Article  CAS  PubMed  Google Scholar 

  49. F.F. Hudari, G.G. Bessegato, F.C.B. Fernandes, M.V.B. Zanoni, P.R. Bueno, Reagentless detection of low-molecular-weight triamterene using self-doped TiO2 Nanotubes. Anal. Chem. (2018)

    Google Scholar 

  50. E.P. Wigner, Lower limit for the energy derivative of the scattering phase shift. Phys. Rev. 98(1), 145–147 (1955)

    Article  CAS  Google Scholar 

  51. J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013)

    Article  CAS  PubMed  Google Scholar 

  52. Q. Wang, J.E. Moser, M. Gratzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B. 109(31), 14945–14953 (2005)

    Article  CAS  PubMed  Google Scholar 

  53. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials 4(5), 366–377 (2005)

    Article  PubMed  CAS  Google Scholar 

  54. B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414(6861), 345–352 (2001)

    Article  CAS  PubMed  Google Scholar 

  55. P.R. Bueno; G.D. Schrott, P.S. Bonanni, S.N. Simison, J.P. Busalmen, Biochemical capacitance of geobacter sulfurreducens biofilms. Chemsuschem 8(15), 2492–2495 (2015)

    Article  CAS  PubMed  Google Scholar 

  56. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496–499 (2000)

    Article  CAS  PubMed  Google Scholar 

  57. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008)

    Article  CAS  PubMed  Google Scholar 

  58. J.M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001)

    Article  CAS  PubMed  Google Scholar 

  59. S.S. Iqbal, M.W. Mayo, J.G. Bruno, B.V. Bronk, C.A. Batt, J.P. Chambers, A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelectron. 15(11–12), 549–578 (2000)

    Article  CAS  PubMed  Google Scholar 

  60. J.R. Lakowicz, Radiative decay engineering: biophysical and biomedical applications. Anal. Biochem. 298(1), 1–24 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. N. Nelson, C.F. Yocum, Structure and function of photosystems I and II. Ann. Rev. Plant Biol. 57, 521–565 (2006)

    Article  CAS  PubMed  Google Scholar 

  62. S. Hammes-Schiffer, Theory of proton-coupled electron transfer in energy conversion processes. Acc. Chem. Res. 42(12), 1881–1889 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Y. Qiao, S.J. Bao, C.M. Li, Electrocatalysis in microbial fuel cells-from electrode material to direct electrochemistry. Energy Environ. Sci. 3(5), 544–553 (2010)

    Article  CAS  Google Scholar 

  64. C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, Plastic solar cells. Adv. Funct. Mater. 11(1), 15–26 (2001)

    Article  CAS  Google Scholar 

  65. D. Gust, T.A. Moore, A.L. Moore, Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 34(1), 40–48 (2001)

    Article  CAS  PubMed  Google Scholar 

  66. F. Odobel, E. Blart, M. Lagree, M. Villieras, H. Boujtita, N. El Murr, S. Caramori, C.A. Bignozzi, Porphyrin dyes for TiO2 sensitization. J. Mater. Chem. 13(3), 502–510 (2003)

    Article  CAS  Google Scholar 

  67. G.M. Crouch, D. Han, S.K. Fullerton-Shirey, D.B. Go, P.W. Bohn, Addressable direct-write nanoscale filament formation and dissolution by nanoparticle-mediated bipolar electrochemistry. Acs Nano 11(5), 4976–4984 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. N. Ebejer, A.G. Guell, S.C.S. Lai, K. McKelvey, M.E. Snowden, P.R. Unwin, Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. In Annual Review of Analytical Chemistry, vol 6, ed. by R.G. Cooks, J.E. Pemberton (2013), pp. 329–351

    Google Scholar 

  69. S. Lemay, H. White, Electrochemistry at the nanoscale: tackling old questions, posing new ones. Acc. Chem. Res. 49(11), 2371–2371 (2016)

    Article  CAS  PubMed  Google Scholar 

  70. S.M. Oja, Y.S. Fan, C.M. Armstrong, P. Defnet, B. Zhang, Nanoscale electrochemistry revisited. Anal. Chem. 88(1), 414–430 (2016)

    Article  CAS  PubMed  Google Scholar 

  71. S.M. Oja, Y.S. Fan, C.M. Armstrong, P. Defnet, B. Zhang, Nanoscale electrochemistry revisited, vol. 88 (2016, p. 414). Anal. Chem. 88(12), 6628–6628 (2016)

    Article  CAS  PubMed  Google Scholar 

  72. S.M. Oja, M. Wood, B. Zhang, Nanoscale electrochemistry. Anal. Chem. 85(2), 473–486 (2013)

    Google Scholar 

  73. H. Sugimura, K. Okiguchi, N. Nakagiri, M. Miyashita, Nanoscale patterning of an organosilane monolayer on the basis of tip-induced electrochemistry in atomic force microscopy. J. Vac. Sci. Technol. B 14(6), 4140–4143 (1996)

    Article  CAS  Google Scholar 

  74. S. Zaleski, A.J. Wilson, M. Mattei, X. Chen, G. Goubert, M.F. Cardinal, K.A. Willets, R.P. Van Duyne, Investigating nanoscale electrochemistry with surface- and tip-enhanced Raman spectroscopy. Acc. Chem. Res. 49(9), 2023–2030 (1996)

    Article  CAS  PubMed  Google Scholar 

  75. T.V.P. Bliss, G.L. Collingridge, A synaptic model of memory—long-term potentiation in the hippocampus. Nature 361(6407), 31–39 (1993)

    Article  CAS  PubMed  Google Scholar 

  76. N.C. Danbolt, Glutamate uptake. Prog. Neurobiol. 65(1), 1–105 (2001)

    Article  CAS  PubMed  Google Scholar 

  77. B.K. Day, F. Pomerleau, J.J. Burmeister, P. Huettl, G.A. Gerhardt, Microelectrode array studies of basal and potassium-evoked release of L-glutamate in the anesthetized rat brain. J. Neurochem. 96(6), 1626–1635 (2006)

    Article  CAS  PubMed  Google Scholar 

  78. E.N. Pothos, V. Davila, D. Sulzer, Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J. Neurosci. 18(11), 4106–4118 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.L. Barabasi, The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)

    Article  CAS  PubMed  Google Scholar 

  80. A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9(4), 353–358 (2010)

    Article  CAS  PubMed  Google Scholar 

  81. Q.F. Zhang, E. Uchaker, S.L. Candelaria, G.Z. Cao, Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 42(7), 3127–3171 (2013)

    Article  CAS  PubMed  Google Scholar 

  82. S.Y. Chung, J.T. Bloking, Y.M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1(2), 123–128 (2002)

    Article  CAS  PubMed  Google Scholar 

  83. B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging. Nature 458(7235), 190–193 (2009)

    Article  CAS  PubMed  Google Scholar 

  84. M. Prabu, S. Selvasekarapandian, A.R. Kulkarni, S. Karthikeyan, G. Hirankumar, C. Sanjeeviraja, Ionic transport properties of LiCoPO4 cathode material. Solid State Sci. 13(9), 1714–1718 (2011)

    Article  CAS  Google Scholar 

  85. E. Laviron, AC polarograpy and faradaic impedance of strongly adsorbed electroactive species. 2. Theoretical-study of a quasi-reversible reaction in the case of Framkin isotherm. J. Electroanal. Chem. 105(1), 25–34 (1979)

    Google Scholar 

  86. E. Laviron, AC polarography and faradaic impedance of strongly adsorbed electroactive species. 1. Theoretical and experimental-study of quasi-reversible reaction in the case of Langmuir isotherm. J. Electroanal. Chem. 97(2), 135–149 (1979)

    Google Scholar 

  87. P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.M. Tarascon, C. Masquelier, Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO(4). Nat. Mater. 7(9), 741–747 (2008)

    Google Scholar 

  88. S.C. Yin, H. Grondey, P. Strobel, M. Anne, L.F. Nazar, Electrochemical property: Structure relationships in monoclinic Li3-yV2(PO4)(3). J. Am. Chem. Soc. 125(34), 10402–10411 (2003)

    Google Scholar 

  89. A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd edn. (Wiley, New York, 2000)

    Google Scholar 

  90. S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83(2), 407–470 (2011)

    Article  CAS  Google Scholar 

  91. E. McCann, V.I. Fal’ko, Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96(8) (2006)

    Google Scholar 

  92. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)

    Article  CAS  Google Scholar 

  93. A. Nitzan, A relationship between electron-transfer rates and molecular conduction. J. Phys. Chem. A 105(12), 2677–2679 (2001)

    Article  CAS  Google Scholar 

  94. A. Nitzan, Electron transmission through molecules and molecular interfaces. Ann. Rev. Phys. Chem. 52, 681–750 (2001)

    Google Scholar 

  95. E. Wierzbinski, R. Venkatramani, K.L. Davis, S. Bezer, J. Kong, Y. Xing, E. Borguet, C. Achim, D.N. Beratan, D.H. Waldeck, The single-molecule conductance and electrochemical electron-transfer rate are related by a power law. Acs Nano 7(6), 5391–5401 (2013)

    Article  CAS  PubMed  Google Scholar 

  96. E. Katz, I. Willner, Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. International Edition 43(45), 6042–6108 (2004)

    Article  CAS  PubMed  Google Scholar 

  97. C. Mora, K. Le Hur, Universal resistances of the quantum resistance-capacitance circuit. Nat. Phys. 6(9), 697–701 (2010)

    Article  CAS  Google Scholar 

  98. F. Fogolari, A. Brigo, H. Molinari, The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J. Mol. Recognit. 15(6), 377–392 (2002)

    Article  CAS  PubMed  Google Scholar 

  99. M.S. Goes, H. Rahman, J. Ryall, J.J. Davis, P.R. Bueno, A dielectric model of self-assembled monolayer interfaces by capacitive spectroscopy. Langmuir 28(25), 9689–9699 (2012)

    Article  PubMed  CAS  Google Scholar 

  100. A.Y. Grosberg, T.T. Nguyen, B.I. Shklovskii, Colloquium: the physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 74(2), 329–345 (2002)

    Article  CAS  Google Scholar 

  101. Y. Levin, Electrostatic correlations: from plasma to biology. Rep. Prog. Phys. 65(11), 1577–1632 (2002)

    Article  CAS  Google Scholar 

  102. P. Geerlings, S. Fias, Z. Boisdenghien, F. De Proft, Conceptual DFT: chemistry from the linear response function. Chem. Soc. Rev. 43(14), 4989–5008 (2014)

    Article  CAS  PubMed  Google Scholar 

  103. P.R. Bueno, J.J. Davis, Elucidating redox level dispersion and local dielectric effects within electroactive molecular films. Anal. Chem. 86(4), 1977–2004 (2014)

    Article  CAS  PubMed  Google Scholar 

  104. R. Landauer, Conductance from transmission—common-sense points. Phys. Scr. T42, 110–114 (1992)

    Article  Google Scholar 

  105. R.A. Marcus, N. Sutin, Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811(3), 265–322 (1985)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Roberto Bueno .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bueno, P.R. (2018). Introduction to Fundamental Concepts. In: Nanoscale Electrochemistry of Molecular Contacts. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-90487-0_1

Download citation

Publish with us

Policies and ethics