Skip to main content

Genetic Aspects of Cannabis Use Disorder

  • Chapter
  • First Online:
Cannabis Use Disorders

Abstract

The demand for treatment of cannabis use disorder (CUD) is steadily rising and with this comes a need to improve current screening methods and medical management. The areas of genetics and epigenetics represent promising avenues of research to help respond to this demand. Twin studies have shown that CUD has 50–70% heritability rate, likely involving multiple genes whose expression varies according to an individual’s environment. Initial hypothesis-driven studies have attempted to associate certain candidate genes and families of genes. Among the most widely studied are those implicated in dopamine regulation, as well as cannabinoid genes, transporter genes, and clock genes. Unfortunately, the results from these studies offer no definitive conclusions. More advanced techniques such as genome-wide association studies (GWAS) have identified other candidate genes, but these also remain to be confirmed in further studies. Thus, the genetics of cannabis use and CUD is in its infancy. For these reasons, it may be time to reflect on current methods and revise our models to integrate other approaches to phenotyping, leading to more precise gene candidate identification and an understanding of their role in the pathophysiology of CUD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations Office on Drugs and Crime. World drug report. Vienna: United Nations; 2015.

    Google Scholar 

  2. Anthony JC, Warner LA, Kessler RC. Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: basic findings from the National Comorbidity Survey. Exp Clin Psychopharmacol. 1994;2:244.

    Article  Google Scholar 

  3. Hasin DS, Saha TD, Kerridge BT, et al. Prevalence of marijuana use disorders in the United States between 2001-2002 and 2012-2013. JAMA Psychiat. 2015;72:1235–42.

    Article  Google Scholar 

  4. Bogdan R, Winstone JM, Agrawal A. Genetic and environmental factors associated with Cannabis involvement. Curr Addict Rep. 2016;3:199–213.

    Article  Google Scholar 

  5. Agrawal A, Lynskey MT. The genetic epidemiology of cannabis use, abuse and dependence. Addiction. 2006;101:801–12.

    Article  Google Scholar 

  6. Verweij KJ, Vinkhuyzen AA, Benyamin B, et al. The genetic aetiology of cannabis use initiation: a meta-analysis of genome-wide association studies and a SNP-based heritability estimation. Addict Biol. 2013;18:846–50.

    Article  CAS  Google Scholar 

  7. Haberstick BC, Zeiger JS, Corley RP, et al. Common and drug-specific genetic influences on subjective effects to alcohol, tobacco and marijuana use. Addiction. 2011;106:215–24.

    Article  Google Scholar 

  8. Sherva R, Wang Q, Kranzler H, et al. Genome-wide association study of Cannabis dependence severity, novel risk variants, and shared genetic risks. JAMA Psychiat. 2016;73:472–80.

    Article  Google Scholar 

  9. Gruenewald PJ, Remer LG, LaScala EA. Testing a social ecological model of alcohol use: the California 50-city study. Addiction. 2014;109:736–45.

    Article  Google Scholar 

  10. Babor T, Caetano R, Casswell S, et al. Alcohol: no ordinary commodity: research and public policy. New York/Oxford: Oxford University Press; 2003.

    Google Scholar 

  11. Lee JP, Pagano A, Moore RS, et al. Impacts of alcohol availability on tribal lands where alcohol is prohibited: a community-partnered qualitative investigation. Int J Drug Policy. 2018;54:77–86.

    Article  Google Scholar 

  12. Gfroerer J. Correlation between drug use by teenagers and drug use by older family members. Am J Drug Alcohol Abuse. 1987;13:95–108.

    Article  CAS  Google Scholar 

  13. Meller WH, Rinehart R, Cadoret RJ, Troughton E. Specific familial transmission in substance abuse. Int J Addict. 1988;23:1029–39.

    Article  CAS  Google Scholar 

  14. Merikangas KR, Li JJ, Stipelman B, et al. The familial aggregation of cannabis use disorders. Addiction. 2009;104:622–9.

    Article  Google Scholar 

  15. Verweij KJ, Zietsch BP, Lynskey MT, et al. Genetic and environmental influences on cannabis use initiation and problematic use: a meta-analysis of twin studies. Addiction. 2010;105:417–30.

    Article  Google Scholar 

  16. Agrawal A, Neale MC, Jacobson KC, Prescott CA, Kendler KS. Illicit drug use and abuse/dependence: modeling of two-stage variables using the CCC approach. Addict Behav. 2005;30:1043–8.

    Article  CAS  Google Scholar 

  17. Gillespie NA, Neale MC, Kendler KS. Pathways to cannabis abuse: a multi-stage model from cannabis availability, cannabis initiation and progression to abuse. Addiction. 2009;104:430–8.

    Article  Google Scholar 

  18. Vink JM, Wolters LM, Neale MC, Boomsma DI. Heritability of cannabis initiation in Dutch adult twins. Addict Behav. 2010;35:172–4.

    Article  Google Scholar 

  19. Gillespie NA, Aggen SH, Neale MC, et al. Associations between personality disorders and cannabis use and cannabis use disorder: a population-based twin study. Addiction. 2018;113(8):1488–98.

    Article  Google Scholar 

  20. Ducci F, Goldman D. The genetic basis of addictive disorders. Psychiatr Clin North Am. 2012;35:495–519.

    Article  Google Scholar 

  21. Lachman HM, Papolos DF, Saito T, et al. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics. 1996;6:243–50.

    Article  CAS  Google Scholar 

  22. Lotta T, Vidgren J, Tilgmann C, et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry. 1995;34:4202–10.

    Article  CAS  Google Scholar 

  23. Comings DE, Blum K. Reward deficiency syndrome: genetic aspects of behavioral disorders. Prog Brain Res. 2000;126:325–41.

    Article  CAS  Google Scholar 

  24. Baransel Isir AB, Oguzkan S, Nacak M, et al. The catechol-O-methyl transferase Val158Met polymorphism and susceptibility to cannabis dependence. Am J Forensic Med Pathol. 2008;29:320–2.

    Article  Google Scholar 

  25. Estrada G, Fatjo-Vilas M, Munoz MJ, et al. Cannabis use and age at onset of psychosis: further evidence of interaction with COMT Val158Met polymorphism. Acta Psychiatr Scand. 2011;123:485–92.

    Article  CAS  Google Scholar 

  26. Zammit S, Owen MJ, Evans J, Heron J, Lewis G. Cannabis, COMT and psychotic experiences. Br J Psychiatry. 2011;199:380–5.

    Article  Google Scholar 

  27. Markant J, Cicchetti D, Hetzel S, Thomas KM. Contributions of COMT Val(1)(5)(8) Met to cognitive stability and flexibility in infancy. Dev Sci. 2014;17:396–411.

    Article  Google Scholar 

  28. Verdejo-Garcia A, Fagundo AB, Cuenca A, et al. COMT val158met and 5-HTTLPR genetic polymorphisms moderate executive control in cannabis users. Neuropsychopharmacology. 2013;38:1598–606.

    Article  CAS  Google Scholar 

  29. Ira E, Zanoni M, Ruggeri M, Dazzan P, Tosato S. COMT, neuropsychological function and brain structure in schizophrenia: a systematic review and neurobiological interpretation. J Psychiatry Neurosci. 2013;38:366–80.

    Article  Google Scholar 

  30. Batalla A, Soriano-Mas C, Lopez-Sola M, et al. Modulation of brain structure by catechol-O-methyltransferase Val(158) Met polymorphism in chronic cannabis users. Addict Biol. 2013;19:722–32.

    Article  Google Scholar 

  31. Batalla A, Lorenzetti V, Chye Y, et al. The influence of DAT1, COMT, and BDNF genetic polymorphisms on Total and subregional hippocampal volumes in early onset heavy Cannabis users. Cannabis Cannabinoid Res. 2018;3:1–10.

    Article  Google Scholar 

  32. Nacak M, Isir AB, Balci SO, et al. Analysis of dopamine D2 receptor (DRD2) gene polymorphisms in cannabinoid addicts. J Forensic Sci. 2012;57:1621–4.

    Article  CAS  Google Scholar 

  33. Hill SY, Jones BL, Steinhauer SR, Zezza N, Stiffler S. Longitudinal predictors of cannabis use and dependence in offspring from families at ultra high risk for alcohol dependence and in control families. Am J Med Genet B Neuropsychiatr Genet. 2014;171B:383–95.

    Google Scholar 

  34. Jutras-Aswad D, Jacobs MM, Yiannoulos G, et al. Cannabis-dependence risk relates to synergism between neuroticism and proenkephalin SNPs associated with amygdala gene expression: case-control study. PLoS One. 2012;7:e39243.

    Article  CAS  Google Scholar 

  35. Benyamina A, Kebir O, Blecha L, Reynaud M, Krebs MO. CNR1 gene polymorphisms in addictive disorders: a systematic review and a meta-analysis. Addict Biol. 2010;16:1–6.

    Article  Google Scholar 

  36. Bidwell LC, Metrik J, McGeary J, et al. Impulsivity, variation in the cannabinoid receptor (CNR1) and fatty acid amide hydrolase (FAAH) genes, and marijuana-related problems. J Stud Alcohol Drugs. 2013;74:867–78.

    Article  Google Scholar 

  37. Colizzi M, Fazio L, Ferranti L, et al. Functional genetic variation of the cannabinoid receptor 1 and cannabis use interact on prefrontal connectivity and related working memory behavior. Neuropsychopharmacology. 2015;40:640–9.

    Article  CAS  Google Scholar 

  38. Boileau I, Tyndale RF, Williams B, et al. The fatty acid amide hydrolase C385A variant affects brain binding of the positron emission tomography tracer [11C]CURB. J Cereb Blood Flow Metab. 2015;35:1237–40.

    Article  CAS  Google Scholar 

  39. Haughey HM, Marshall E, Schacht JP, Louis A, Hutchison KE. Marijuana withdrawal and craving: influence of the cannabinoid receptor 1 (CNR1) and fatty acid amide hydrolase (FAAH) genes. Addiction. 2008;103:1678–86.

    Article  Google Scholar 

  40. Tyndale RF, Payne JI, Gerber AL, Sipe JC. The fatty acid amide hydrolase C385A (P129T) missense variant in cannabis users: studies of drug use and dependence in Caucasians. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:660–6.

    Article  CAS  Google Scholar 

  41. Hill SY, Jones BL, Steinhauer SR, Zezza N, Stiffler S. Longitudinal predictors of cannabis use and dependence in offspring from families at ultra high risk for alcohol dependence and in control families. Am J Med Genet B Neuropsychiatr Genet. 2016;171B:383–95.

    Article  Google Scholar 

  42. Clarke TK, Bloch PJ, Ambrose-Lanci LM, et al. Further evidence for association of polymorphisms in the CNR1 gene with cocaine addiction: confirmation in an independent sample and meta-analysis. Addict Biol. 2013;18:702–8.

    Article  CAS  Google Scholar 

  43. Icick R, Peoc'h K, Karsinti E, et al. A cannabinoid receptor 1 polymorphism is protective against major depressive disorder in methadone-maintained outpatients. Am J Addict. 2015;24:613–20.

    Article  Google Scholar 

  44. Agrawal A, Lynskey MT, Hinrichs A, et al. A genome-wide association study of DSM-IV cannabis dependence. Addict Biol. 2011;16:514–8.

    Article  Google Scholar 

  45. Di Forti M, Iyegbe C, Sallis H, et al. Confirmation that the AKT1 (rs2494732) genotype influences the risk of psychosis in cannabis users. Biol Psychiatry. 2012;72:811–6.

    Article  CAS  Google Scholar 

  46. Morgan CJ, Freeman TP, Powell J, Curran HV. AKT1 genotype moderates the acute psychotomimetic effects of naturalistically smoked cannabis in young cannabis smokers. Transl Psychiatry. 2016;6:e738.

    Article  CAS  Google Scholar 

  47. van Winkel R. Family-based analysis of genetic variation underlying psychosis-inducing effects of cannabis: sibling analysis and proband follow-up. Arch Gen Psychiatry. 2011;68:148–57.

    Article  Google Scholar 

  48. Stringer S, Minica CC, Verweij KJ, et al. Genome-wide association study of lifetime cannabis use based on a large meta-analytic sample of 32 330 subjects from the International Cannabis Consortium. Transl Psychiatry. 2016;6:e769.

    Article  CAS  Google Scholar 

  49. Gizer IR, Bizon C, Gilder DA, Ehlers CL, Wilhelmsen KC. Whole genome sequence study of cannabis dependence in two independent cohorts. Addict Biol. 2018;23:461–73.

    Article  CAS  Google Scholar 

  50. Liu J, Wu X, Wang X, et al. Global gene expression profiling reveals functional importance of Sirt2 in endothelial cells under oxidative stress. Int J Mol Sci. 2013;14:5633–49.

    Article  CAS  Google Scholar 

  51. Flavell SW, Cowan CW, Kim TK, et al. Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science. 2006;311:1008–12.

    Article  CAS  Google Scholar 

  52. Szutorisz H, Hurd YL. Epigenetic effects of Cannabis exposure. Biol Psychiatry. 2016;79:586–94.

    Article  CAS  Google Scholar 

  53. Gerra MC, Jayanthi S, Manfredini M, et al. Gene variants and educational attainment in cannabis use: mediating role of DNA methylation. Transl Psychiatry. 2018;8:23.

    Article  Google Scholar 

  54. Ketcherside A, Noble LJ, McIntyre CK, Filbey FM. Cannabinoid receptor 1 gene by Cannabis use interaction on CB1 receptor density. Cannabis Cannabinoid Res. 2017;2:202–9.

    Article  Google Scholar 

  55. Cuthbert BN, Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 2013;11:126.

    Article  Google Scholar 

  56. Kwako LE, Bickel WK, Goldman D. Addiction biomarkers: dimensional approaches to understanding addiction. Trends Mol Med. 2018;24:121–8.

    Article  CAS  Google Scholar 

  57. Kendler KS, Aggen SH, Prescott CA, Crabbe J, Neale MC. Evidence for multiple genetic factors underlying the DSM-IV criteria for alcohol dependence. Mol Psychiatry. 2012;17:1306–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Benyamina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blecha, L., Lafaye, G., Benyamina, A. (2019). Genetic Aspects of Cannabis Use Disorder. In: Montoya, I., Weiss, S. (eds) Cannabis Use Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-90365-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90365-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90364-4

  • Online ISBN: 978-3-319-90365-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics