Skip to main content

Plant Transformation Strategies

  • Chapter
  • First Online:

Abstract

In this chapter, a general outlook on the plant transformation approaches is provided with emphasis in applications related to molecular farming. The rationale of nuclear, chloroplast, and transient expressions mediated by viral vectors are reviewed. Implications of such technologies in terms of protein yields, posttranslational modifications, scalability, and production time scale are critically analyzed. New trends in plant genetic engineering are also identified and perspectives on how these technologies might influence the molecular farming field are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arai Y, Shikanai T, Doi Y, Yoshida S, Yamaguchi I, Nakashita H (2004) Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant Cell Physiol 45:1176–1184

    Article  PubMed  CAS  Google Scholar 

  • Bally J, Nadai M, Vitel M, Rolland A, Dumain R, Dubald M (2009) Plant physiological adaptations to the massive foreign protein synthesis occurring in recombinant chloroplasts. Plant Physiol 150:1474–1481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bally J, Paget E, Droux M, Job C, Job D, Dubald M (2008) Both the stroma and thylakoid lumen of tobacco chloroplasts are competent for the formation of disulphide bonds in recombinant proteins. Plant Biotechnol J 6:46–61

    PubMed  CAS  Google Scholar 

  • Bendich AJ (1987) Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays 6:279–282

    Article  PubMed  CAS  Google Scholar 

  • Bobik K, Burch-Smith TM (2015) Chloroplast signaling within, between and beyond cells. Front Plant Sci 6:781

    Article  PubMed  PubMed Central  Google Scholar 

  • Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol 66:211–241

    Article  PubMed  CAS  Google Scholar 

  • Brune B, Hartzell P, Nicotera P, Orrenius S (1991) Spermine prevents endonuclease activation and apoptosis in thymocytes. Exp Cell Res 195:323–329

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary S, Parmenter DL, Moloney MM (1998) Transgenic Brassica carinata as a vehicle for the production of recombinant proteins in seeds. Plant Cell Rep 17:195–200

    Article  CAS  PubMed  Google Scholar 

  • Dafny-Yelin M, Levy A, Tzfira T (2008) The ongoing saga of Agrobacterium–host interactions. Trends Plant Sci 13(3):102–105

    Article  PubMed  CAS  Google Scholar 

  • Daniell H (1993) Foreign gene expression in chloroplasts of higher plants mediated by tungsten particle bombardment. Methods Enzymol 217:536–556

    Article  PubMed  CAS  Google Scholar 

  • Daniell H (1997) Transformation and foreign gene expression in plants by microprojectile bombardment. Methods Mol Biol 62:463–489

    PubMed  CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniell H (2007) Transgene containment by maternal inheritance: effective or elusive? Proc Natl Acad Sci U S A 104(17):6879–6880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R (2005) Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23:1779–1783

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Dhingra A (2002) Multigene engineering: dawn of an exciting new era in biotechnology. Curr Opin Biotechnol 13:136–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17(1):134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniell H, Parkinson CL (2003) Jumping genes and containment. Nat Biotechnol 21:374–375

    Article  PubMed  CAS  Google Scholar 

  • Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND, Banks RK, Chakrabarti D, Daniell H (2010) Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol J 8:223–242

    Article  PubMed  CAS  Google Scholar 

  • De Block M, Herrera-Estrella L, Van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO 3(8):1681–1689

    Article  Google Scholar 

  • Deng XW, Gruissem W (1987) Control of plastid gene expression during development: the limited role of transcriptional regulation. Cell 49:379–387

    Article  PubMed  CAS  Google Scholar 

  • Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    Article  PubMed  CAS  Google Scholar 

  • Elghabi Z, Ruf S, Bock R (2011) Biolistic co-transformation of the nuclear and plastid genomes. Plant J 67:941–948

    Article  PubMed  CAS  Google Scholar 

  • Francis KE, Spiker S (2005) Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant J 41(3):464–477

    Article  PubMed  CAS  Google Scholar 

  • Garg R, Tolbert M, Oakes JL, Clemente TE, Bost KL, Piller KJ (2007) Chloroplast targeting of FanC, the major antigenic subunit of Escherichia coli K99 fimbriae, in transgenic soybean. Plant Cell Rep 26(7):1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67(1):16–37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gelvin SB (2010) Finding a way to the nucleus. Curr Opin Microbiol 13(1):53–58

    Article  PubMed  CAS  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection–a new platform for expressing recombinant vaccines in plants. Vaccine 23(17–18):2042–2048

    Article  PubMed  CAS  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18(2):134–141

    Article  PubMed  CAS  Google Scholar 

  • Gleba Y, Marillonnet S, Klimyuk V (2004) Engineering viral expression vectors for plants: the ‘full virus’ and the ‘deconstructed virus’ strategies. Curr Opin Plant Biol 7(2):182–188

    Article  PubMed  CAS  Google Scholar 

  • Golczyk H, Greiner S, Wanner G, Weihe A, Bock R, Börner T, Herrmann RG (2014) Chloroplast DNA in mature and senescing leaves: a reappraisal. Plant Cell 26:847–854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Golds T, Maliga P, Koop HU (1993) Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum. Nat Biotechnol 11:95–97

    Article  CAS  Google Scholar 

  • Gómez E, Lucero MS, Chimeno Zoth S, Carballeda JM, Gravisaco MJ, Berinstein A (2013) Transient expression of VP2 in Nicotiana benthamiana and its use as a plant-based vaccine against infectious bursal disease virus. Vaccine 31(23):2623–2627

    Article  PubMed  CAS  Google Scholar 

  • Gomord V, Faye L (2004) Post-translational modification of therapeutic proteins in plants. Curr Opin Plant Biol 7:171–181

    Article  PubMed  CAS  Google Scholar 

  • Guda C, Lee S-B, Daniell H (2000) Stable expression of a biodegradable protein-based polymer in tobacco chloroplasts. Plant Cell Rep 19:257–262

    Article  CAS  PubMed  Google Scholar 

  • He J, Peng L, Lai H, Hurtado J, Stahnke J, Chen Q (2014) A plant-produced antigen elicits potent immune responses against West Nile virus in mice. Biomed Res Int 2014:952865

    PubMed  PubMed Central  Google Scholar 

  • Hefferon KL (2012) Plant virus expression vectors set the stage as production platforms for biopharmaceutical proteins. Virology 433(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Hellens RP, Edward EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983) Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303(5914):209–213

    Article  CAS  Google Scholar 

  • Herz S, Füssl M, Steiger S, Koop HU (2005) Development of novel types of plastid trans formation vectors and evaluation of factors controlling expression. Transgenic Res 14:969–982

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort R (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Jin S, Daniell H (2015) The engineered chloroplast genome just got smarter. Trends Plant Sci 20:622–640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joensuu JJ, Kotiaho M, Teeri TH, Valmu L, Nuutila AM, Oksman-Caldentey K-M, Niklander-Teeri V (2006) Glycosylated F4 (K88) fimbrial adhesin FaeG expressed in barley endosperm induces ETEC-neutralizing antibodies in mice. Transgenic Res 15:359–373

    Article  PubMed  CAS  Google Scholar 

  • Kanagarajan S, Tolf C, Lundgren A, Waldenström J, Brodelius PE (2012) Transient expression of hemagglutinin antigen from low pathogenic avian influenza a (H7N7) in nicotiana benthamiana. PLoS ONE 7:e33010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanagaraj AP, Verma D, Daniell H (2011) Expression of dengue-3 premembrane and envelope polyprotein in lettuce chloroplasts. Plant Mol Biol 76:323–333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang TJ, Loc NH, Jang MO, Jang YS, Kim YS, Seo JE, Yang MS (2003) Expression of the B subunit of E. coli heat-labile enterotoxin in the chloroplasts of plants and its characterization. Transgenic Res 12(6):683–691

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Karimi M, Inze D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  PubMed  CAS  Google Scholar 

  • Kikkert JR, Vidal JR, Reisch BI (2005) Stable transformation of plant cells by particle bombardment/biolistics. Meth Mol Biol 286:61–78

    CAS  Google Scholar 

  • Kim MY, Kim BY, Oh SM, Reljic R, Jang YS, Yang MS (2016) Oral immunisation of mice with transgenic rice calli expressing cholera toxin B subunit fused to consensus dengue cEDIII antigen induces antibodies to all four dengue serotypes. Plant Mol Biol 92:347–356

    Article  PubMed  CAS  Google Scholar 

  • Klaus SM, Huang FC, Golds TJ, Koop HU (2004) Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat Biotechnol 22:225–229

    Article  PubMed  CAS  Google Scholar 

  • Koop HU, Steinmuller K, Wagner H, Rossler C, Eibl C, Sacher L (1996) Integration of foreign sequences into the tobacco plastome via polyethylene glycol-mediated protoplast transformation. Planta 199:193–201

    Article  PubMed  CAS  Google Scholar 

  • Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J (2015) Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol Adv 1(33):1024–1042

    Article  CAS  Google Scholar 

  • Laguía-Becher M, Martín V, Kraemer M, Corigliano M, Yacono ML, Goldman A, Clemente M (2010) Effect of codon optimization and subcellular targeting on Toxoplasma gondii antigen SAG1 expression in tobacco leaves to use in subcutaneous and oral immunization in mice. BMC Biotechnol 10:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lakshmi PS, Verma D, Yang X, Lloyd B, Daniell H (2013) Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS ONE 8(1):e54708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee G, Na YJ, Yang B-G, Choi J-P, Seo YB, Hong C-P, Yun CH, Kim DH, Sohn EJ, Kim JH, Sung YC, Kim Y-K, Jang MH, Hwang I (2015a) Oral immunization of haemaggulutinin H5 expressed in plant endoplasmic reticulum with adjuvant saponin protects mice against highly pathogenic avian influenza A virus infection. Plant Biotechnol J 13:62–72

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Kallehauge TB, Pedersen LE, Kildegaarda HF (2015b) Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci Rep 5:8572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee SB, Cheong JJ, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21(3):401–410

    PubMed  CAS  Google Scholar 

  • Leister D (2003) Chloroplast research in the genomic age. Trends Genet 19:47–56

    Article  PubMed  CAS  Google Scholar 

  • Lelivelt CL, McCabe MS, Newell CA, Desnoo CB, van Dun KM, Birch-Machin I, Gray JC, Mills KH, Nugent JM (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774

    Article  PubMed  CAS  Google Scholar 

  • Lelivelt CL, van Dun KM, de Snoo CB, McCabe MS, Hogg BV, Nugent JM (2014) Plastid transformation in lettuce (Lactuca sativa L.) by polyethylene glycol treatment of protoplasts. Methods Mol Biol 1132:317–330

    Article  PubMed  CAS  Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Laine AC, Gomord V, Faye L (1998) N-Glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48

    Article  PubMed  CAS  Google Scholar 

  • Li D, O’Leary J, Huang Y, Huner NP, Jevnikar AM, Ma S (2006) Expression of cholera toxin B subunit and the B chain of human insulin as a fusion protein in transgenic tobacco plants. Plant Cell Rep 25(5):417–424

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Rijzaani H, Karcher D, Ruf S, Bock R (2013) Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Natl Acad Sci U S A 110(8):E623–E632

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma C, Wang L, Webster DE, Campbell AE, Coppel RL (2012) Production, characterisation and immunogenicity of a plant-made Plasmodium antigen–the 19 kDa C-terminal fragment of Plasmodium yoelii merozoite surface protein 1. Appl Microbiol Biotechnol 94(1):151–161

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (1993) Towards plastid transformation in flowering plants. Trends Biotechnol 11:101–106

    Article  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  PubMed  CAS  Google Scholar 

  • Maliga P, Carrer H, Kanevski I, Staub J, Svab Z (1993) Plastid engineering in land plants: a conservative genome is open to change. Phil Trans R Soc Lond B 341:449–454

    Article  Google Scholar 

  • Matsui T, Asao H, Ki M, Sawada K, Kato K (2009) Transgenic lettuce producing a candidate protein for vaccine against edema disease. Biosci Biotechnol Biochem 73:1628–1634

    Article  PubMed  CAS  Google Scholar 

  • Moloney MM, Van-Rooijen G, Sembiosys Genetics Inc (2006) Expression of epidermal growth factor in plant seeds. United States patent US 7091401

    Google Scholar 

  • Monreal-Escalante E, Bañuelos-Hernández B, Hernández M, Fragoso G, Garate T, Sciutto E, Rosales-Mendoza S (2015) Expression of multiple taenia solium immunogens in plant cells through a ribosomal skip mechanism. Mol Biotechnol 57(7):635–643

    Article  PubMed  CAS  Google Scholar 

  • Nakashita H, Arai Y, Shikanai T, Doi Y, Yamaguchi I (2001) Introduction of bacterial metabolism into higher plants by polycistronic transgene expression. Biosci Biotechnol Biochem 65:1688–1691

    Article  PubMed  CAS  Google Scholar 

  • Nelson G, Marconi P, Periolo O, La Torre J, Alvarez MA (2012) Immunocompetent truncated E2 glycoprotein of bovine viral diarrhea virus (BVDV) expressed in Nicotiana tabacum plants: a candidate antigen for new generation of veterinary vaccines. Vaccine 30:4499–4504

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus JM, Rogers JC (1988) Sorting of proteins to vacuoles in plant cells. Plant Mol Biol 38:127–144

    Article  Google Scholar 

  • Neuhaus JM, Sticher L, Meins FJ, Boller T (1991) A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci U S A 88(22):10362–10366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noris E, Poli A, Cojoca R, Rittà M, Cavallo F, Vaglio S, Matic S, Landolfo S (2011) A human papillomavirus 8 E7 protein produced in plants is able to trigger the mouse immune system and delay the development of skin lesions. Arch Virol 156(4):587–595

    Article  PubMed  CAS  Google Scholar 

  • Nugent GD, Coyne S, Nguyen TH, Kavanagh TA, Dix PJ (2005a) Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Sci 170:135–142

    Article  CAS  Google Scholar 

  • Nugent GD, ten Have M, van der Gulik A, Dix PJ, Uijtewaal BA, Mordhorst AP (2005b) Plastid transformants of tomato selected using mutations affecting ribosome structure. Plant Cell Rep 24:341–349

    Article  PubMed  CAS  Google Scholar 

  • Nykiforuk CL, Boothe JG, Murray EW, Keon RG, Goren J, Markley NA, Moloney MM (2005) Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnol J 4:77–85

    Article  CAS  Google Scholar 

  • O’Neill C, Horvath GV, Horvath E, Dix PJ, Medgyesy P (1993) Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J 3:729–738

    Article  PubMed  Google Scholar 

  • Păcurar DI, Thordal-Christensen H, Păcurar ML, Pamfil D, Botez C, Bellini C (2011) Agrobacterium tumefaciens: from crown gall tumors to genetic transformation. Physiol Mol Plant Pathol 76:76–81

    Article  Google Scholar 

  • Parmenter DL, Boothe JG, Van Rooijen GJH, Yeung EC, Moloney MM (1995) Production of biologically active hirudin in plants seeds using oleosin partitioning. Plant Mol Biol 29:1167–1180

    Article  PubMed  CAS  Google Scholar 

  • Paul M, Ma JK (2011) Plant-made pharmaceuticals: leading products and production platforms. Biotechnol Appl Biochem 58(1):58–67

    Article  PubMed  CAS  Google Scholar 

  • Piron R, De Koker S, De Paepe A, Goossens J, Grooten J, Nauwynck H, Depicker A (2014) Boosting in planta production of antigens derived from the porcine reproductive and respiratory syndrome virus (PRRSV) and subsequent evaluation of their immunogenicity. PLoS ONE 9:e91386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rivera AL, Gómez-Lim M, Fernández F, Loske AM (2012) Physical methods for genetic plant transformation. Phys Life Rev 9(3):308–345

    Article  PubMed  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci U S A 104(17):6998–7002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H (2007) Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts-oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol J 5(4):495–510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruhlman TA (2014) Plastid transformation in lettuce (Lactuca sativa L.) by biolistic DNA delivery. Methods Mol Biol 1132:331–343

    Article  PubMed  CAS  Google Scholar 

  • Sainsbury F, Lomonossoff GP (2008) Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol 148(3):1212–1218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509

    Article  PubMed  CAS  Google Scholar 

  • Schnell J, Steele M, Bean J, Neuspiel M, Girard C, Dormann N, Pearson C, Savoie A, Bourbonnière L, Macdonald P (2015) A comparative analysis of insertional effects in genetically engineered plants: considerations for pre-market assessments. Transgenic Res 24(1):1–17

    Article  PubMed  CAS  Google Scholar 

  • Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL, Futerman AH, Aviezer D (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5(5):579–590

    Article  PubMed  CAS  Google Scholar 

  • Shaaltiel Y, Yl Tekoah (2016) Plant specific N-glycans do not have proven adverse effects in humans. Nat Biotechnol 34(7):706–708

    Article  PubMed  CAS  Google Scholar 

  • Shen BR, Zhu CH, Yao Z, Cui LL, Zhang JJ, Yang CW, He ZH, Peng XX (2017) An optimized transit peptide for effective targeting of diverse foreign proteins into chloroplasts in rice. Sci Rep 11(7):46231

    Article  CAS  Google Scholar 

  • Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PTJ, Staub JM, Nehra NS (1999) Stable plastid transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216

    Article  PubMed  CAS  Google Scholar 

  • Smith EF, Townsend CO (1907) A plant tumor of bacterial origin. Science 25:671–673

    Article  PubMed  CAS  Google Scholar 

  • Sojikul P, Buehner N, Mason HS (2003) A plant signal peptide-hepatitis B surface antigen fusion protein with enhanced stability and immunogenicity expressed in plant cells. Proc Natl Acad Sci U S A 100(5):2209–2214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18(3):333–338

    Article  PubMed  CAS  Google Scholar 

  • Staub JM, Maliga P (1992) Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. Plant Cell 4:39–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Staub JM, Maliga P (1994) Extrachromosomal elements in tobacco plastids. Proc Natl Acad Sci U S A 91:7468–7472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci U S A 87:8526–8530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci U S A 90:913–917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas TJ, Kulkarni GD, Greenfield NJ, Shirahata A, Thomas T (1996) Structural specificity effects of trivalent polyamine analogues on the stabilization and conformational plasticity of triplex DNA. Biochem J 319:591–599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thuenemann EC, Meyers AE, Verwey J, Rybicki EP, Lomonossoff GP (2013) A method for rapid production of heteromultimeric protein complexes in plants: assembly of protective bluetongue virus-like particles. Plant Biotechnol J 11(7):839–846

    Article  PubMed  CAS  Google Scholar 

  • To KY, Cheng MC, Chen LF, Chen SC (1996) Introduction and expression of foreign DNA in isolated spinach chloroplasts by electroporation. Plant J 10(4):737–743

    Article  PubMed  CAS  Google Scholar 

  • Tregoning JS, Clare S, Bowe F, Edwards L, Fairweather N, Qazi O, Nixon PJ, Maliga P, Dougan G, Hussell T (2005) Protection against tetanus toxin using a plant-based vaccine. Eur J Biotechnol 35(4):1320–1326

    CAS  Google Scholar 

  • Tzfira T, Citovsky V (2002) Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12(3):121–129

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17(2):147–154

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Li J, Lacroix B, Citovsky V (2004) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20(8):375–383

    Article  PubMed  CAS  Google Scholar 

  • Valkov VT, Gargano D, Scotti N, Cardi T (2014) Plastid transformation in potato: solanum tuberosum. Methods Mol Biol 1132:295–303

    Article  PubMed  CAS  Google Scholar 

  • van Wordragen MF, Dons HJM (1992) Agrobacterium tumefaciens-mediated transformation of recalcitrant crops. Plant Mol Biol Rep 10:12–36

    Article  Google Scholar 

  • Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wakasugi T, Tsudzuki T, Sugiura M (2001) The genomics of land plant chloroplasts: gene content and alteration of genomic information by RNA editing. Photosynth Res 70:107–118

    Article  PubMed  CAS  Google Scholar 

  • Wani SH, Haider N, Kumar H, Singh NB (2010) Plant plastid engineering. Curr Genomics 11:510–512

    Article  Google Scholar 

  • Watson J, Koya V, Leppla SH, Daniell H (2004) Expression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine 22:4374–4384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Werner S, Breus O, Symonenko Y, Marillonnet S, Gleba Y (2011) High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector. Proc Natl Acad Sci U S A. 108(34):14061–14066

    Article  PubMed  PubMed Central  Google Scholar 

  • Wirth S, Calamante G, Mentaberry A, Bussmann L, Lattanzi M, Barañao L, Bravo-Almonacid F (2004) Expression of active human epidermal growth factor (hEGF) in tobacco plants by integrative and non-integrative systems. Mol Breed 13:23

    Article  CAS  Google Scholar 

  • Yang J, Barr LA, Fahnestock SR, Liu ZB (2005) High yield recombinant silk-like protein production in transgenic plants through protein targeting. Transgenic Res 14(3):313–324

    Article  PubMed  CAS  Google Scholar 

  • Zhou B, Zhang Y, Wang X, Dong J, Wang B, Han C, Yu J, Li D (2010) Oral administration of plant-based rotavirus VP6 induces antigen-specific IgAs, IgGs and passive protection in mice. Vaccine 28(37):6021–6027

    Article  PubMed  CAS  Google Scholar 

  • Zoubenko OV, Allison LA, Svab Z, Maliga P (1994) Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res 22:3819–3824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Rosales-Mendoza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Márquez-Escobar, V.A., González-Ortega, O., Rosales-Mendoza, S. (2018). Plant Transformation Strategies. In: MacDonald, J. (eds) Prospects of Plant-Based Vaccines in Veterinary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-90137-4_2

Download citation

Publish with us

Policies and ethics