Skip to main content

The Role of Morphometry to Delineate Changes in the Spikelet Shape of Wild Cereals: The Case Study of Takarkori (Holocene, Central Sahara, SW Libya)

  • Chapter
  • First Online:
Plants and People in the African Past

Abstract

A morphometrical study of hundreds of spikelets recovered from archaeological deposits of Takarkori (SW Libya ) provides data on the presence and size variations of wild cereals gathered by hunter-gatherers in the central Sahara during the Early and Middle Holocene (c. 10,200–c. 4600 cal yr BP). Spikelets of Panicum laetum, Echinochloa colona and Sorghum bicolor subsp. verticilliflorum, found in 18 seed/fruit concentrations, are measured using image analysis techniques. These data demonstrate that the archaeobotanical specimens have a similar typology, maturity stage and are of a uniform size, suggesting that they were selected by the human groups living in the area. Indeed, the spikelets of two samples recovered from sediments excavated elsewhere on the site compared to those from the seed concentrations, show a smaller size and greater variation in maturation status. Results are compared to metrical data obtained from modern species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allaby RG, Gutaker R, Clarke AC et al (2015a) Using archaeogenomic and computational approaches to unravel the history of local adaptation in crops. Philos T Roy Soc B 370:20130377

    Article  CAS  Google Scholar 

  • Allaby RG, Kistler L, Gutaker RM et al (2015b) Archaeogenomic insights into the adaptation of plants to the human environment: pushing plant-hominin co-evolution back to the Pliocene. J Hum Evol 79:150–157

    Article  PubMed  Google Scholar 

  • Bacchetta G, Grillo O, Mattana E et al (2008) Morpho-colorimetric charachterization by image analysis to identify diaspores of wild plant species. Flora 203:669–682

    Article  Google Scholar 

  • Bandini Mazzanti M, Bosi G, Mercuri AM et al (2012) Analisi archeobiometriche e reperti carpologici: scopi e prospettive. In: Vezzalini G, Zannini P (eds) Atti del VII Congresso Nazionale di Archeometria (AIAr). Pàtron Editore, Bologna CD-rom

    Google Scholar 

  • Beldados A, Costantini L (2011) Sorghum exploitation at the Kassala and its environs, North Eastern Sudan in the second and first millennia BC. Nyame Akuma 75:33–39

    Google Scholar 

  • Beldados A, Manzo A, Murphy C, Stevens CJ, Fuller DQ (2018) Evidence of sorghum cultivation and possible pearl millet in the second millennium BC at Kassala, Eastern Sudan

    Google Scholar 

  • Biagetti S, di Lernia S (2013) Holocene deposits of Saharan rock shelters: the case of Takarkori and other sites from the Tadrart Acacus Mountains (SW Libya). Afr Archaeol Rev 30:305–333

    Article  Google Scholar 

  • Biagetti S, Merighi F, di Lernia S (2004) Decoding an Early Holocene Saharan stratified site. Ceramic dispersion and site formation processes in the Takarkori rockshelter, Acacus Mountains, Libya. J Afr Archaeol 2(1):11–36

    Article  Google Scholar 

  • Biagetti S, Poggi G, di Lernia S (2009) Unearthing the hearths. Preliminary results on the Takarkori rockshelter fireplaces (Acacus Mts., Libya). Defining a methodological approach to interpret structural evidence. BAR Int Ser 2045:23–29

    Google Scholar 

  • Bosi G, Costantini F, Berti P et al (2007) Applicazioni morfobiometriche in campo archeocarpologico: primi dati su Papaver somniferum nell’Alto Medioevo di Ferrara. Atti Soc Nat Mat Modena 137(2006):373–387

    Google Scholar 

  • Boulos L (2005) Flora of Egypt, vol 4. Al Hadara Publishing, Cairo

    Google Scholar 

  • Chen T, Wang X, Dai J et al (2016) Plant use in the Lop Nor region of southern Xinjiang, China: Archaeobotanical studies of the Yingpan cemetery (~25–420 AD). Quatern Int 426:166–174

    Article  Google Scholar 

  • Cherkinsky A, di Lernia S (2013) Bayesian Approach to 14Cdates for estimation of long-term archaeological sequences in arid environments: the Holocene site of Takarkori Rockshelter, Southwest Libya. Radiocarbon 55(2–3):771–782

    Article  CAS  Google Scholar 

  • Clayton WD, Renvoize SA (1982) Flora of tropical East Africa. Gramineae (Part 3). AA Balkema, Rotterdam

    Google Scholar 

  • Corti R (1942) Flora e vegetazione del Fezzan e della Regione di Gat, Firenze

    Google Scholar 

  • Cremaschi M, Zerboni A, Mercuri AM et al (2014) Takarkori rock shelter (SW Lybia): an archive of Holocene climate and environmental changes in the central Sahara. Quat Sci Rev 101:36–60

    Article  Google Scholar 

  • Dahlberg JA, Wasylikowa K (1996) Image and statistical analyses of early sorghum remains (8000 BP) from the Nabta Playa archaeological site in the Western Desert, Southern Egypt. Veg Hist Archaeobot 5(4):293–299

    Article  Google Scholar 

  • de Leonardis WD, Santis CD, Fichera G et al (2011) Seed morphobiometry of wild and cultivated taxa of Phaseolus L. (Fabaceae). Indian J Plant Genet Resour 24(3):257–264

    Google Scholar 

  • de Wet JMJ (1978) Systematics and evolution of Sorghum sect. Sorghum (Gramineae). Am J Bot 65(4):477–484

    Google Scholar 

  • di Lernia S (ed). (1999). The Uan Afuda cave. Hunter-gatherer societies of central Sahara, vol. 1. All’Insegna del Giglio, Florence

    Google Scholar 

  • di Lernia S, N’siala IM, Mercuri AM (2012) Saharan prehistoric basketry. Archaeological and archaeobotanical analysis of the early-middle Holocene assemblage from Takarkori (Acacus Mts., SW Libya). J Archaeol Sci 39(6):1837–1853

    Google Scholar 

  • di Lernia S, Tafuri MA (2013) Persistent deathplaces and mobile landmarks: the Holocene mortuary and isotopic record from Wadi Takarkori (SW Libya). J Anthropol Archaeol 32(1):1–15

    Article  Google Scholar 

  • di Lernia S, Bruni S, Cislaghi I et al (2016) Colour in context. Pigments and other coloured residues from the early-middle Holocene site of Takarkori (SW Libya). Archaeol. Anthropol Sci 8(2):381–402

    Google Scholar 

  • Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707

    Article  CAS  PubMed  Google Scholar 

  • Dunne J, Mercuri AM, Evershed RP et al (2016) Earliest direct evidence of plant processing in prehistoric Saharan pottery. Nat Plants 3(16194)

    Google Scholar 

  • Dunne J, Eversheld RP, Salque M et al (2012) First dairying in green Saharan Africa in the fifth millennium BC. Nature 486(7403):390–394

    Article  CAS  PubMed  Google Scholar 

  • Fahmy AG (2001) Palaeoethnobotanical studies of the Neolithic settlement in Hidden Valley, Farafra Oasis. Egypt. Veg Hist Archaeobot 10:235–246

    Article  Google Scholar 

  • Fornaciari R, Fornaciari S, Francia E et al (2016) Panicum spikelets from the Early Holocene Takarkori rockshelter (SW Libya): Archaeo-molecular and botanical investigations. Plant Biosyst 2016:1–13

    Google Scholar 

  • Fuller DQ, Harvey E, Qin L (2007) Presumed domestication? Evidence for wild rice cultivation and domestication in the fifth millennium BC of the Lower Yangtze region. Antiquity 81(312):316–331

    Article  Google Scholar 

  • Fuller DQ, Stevens CJ (2018) Sorghum Domestication and Diversification: A current archeobotanical perspective

    Google Scholar 

  • Garcea EAA (2004) An alternative way towards food production: the perspective from the Libyan Sahara. J World Prehist 18(2):107–154

    Article  Google Scholar 

  • Germer R (1985) Flora des pharaonischen Ägypten, vol. 14. Verlag Philipp von Zabern, Darmstadt

    Google Scholar 

  • Harlan JR (1985) The living fields: our agricultural heritage. Cambridge University Press, Cambridge

    Google Scholar 

  • Harlan JR (1989) Wild grass seeds as food sources in the Sahara and Sub-Sahara. Sahara 2:69–74

    Google Scholar 

  • Howard T, Archer JE, Turley RM (2011) Evolution, physiology and phytochemestry of the psycotoxic arable mimic weed darnel (Lolium temulentum L.). Prog Bot 72:73–104

    Google Scholar 

  • Kim M, Ahn SM, Jeong Y (2013) Rice (Oryza sativa L.): seed-size comparison and cultivation in ancient Korea. Econ Bot 67(4):378–386

    Article  Google Scholar 

  • Kuper R, Kröpelin S (2006) Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science 313(5788):803–807

    Article  CAS  PubMed  Google Scholar 

  • Liengme B (2015) A guide to Microsoft Excel 2013 for scientists and engineers. Academic Press, Massachusetts

    Google Scholar 

  • Magid AA (1989) Plant domestication in the Middle Nile Basin. British Archaeological Reports, Oxford

    Google Scholar 

  • Maire R (1952) Flore de l’Afrique du Nord (Maroc, Algérie, Tunisie, Tripolitaine, Cyrénaïque et Sahara). Jouve, Paris

    Google Scholar 

  • Manandhar NP (2002) Plants and people of Nepal. Timber Press, Oregon

    Google Scholar 

  • Marshall F, Hildebrand E (2002) Cattle before crops: the beginnings of food production in Africa. J World Prehist 16(2):99–143

    Article  Google Scholar 

  • Mercuri AM (2001) Preliminary analyses of fruits, seeds and other few plants macrofossils from the Early Holocene sequence. In: Garcea EAA (ed) Uan Tabu in the settlement history of the Libyan Sahara. Arid Zone Archaeology, 2:161–188. All’Insegna del Giglio, Firenze

    Google Scholar 

  • Mercuri AM (2008a) Human influence, plant landscape, evolution and climate inferences from the archaeobotanical records of the Wadi Teshuinat area (Libyan Sahara). J Arid Environ 72:1950–1967

    Article  Google Scholar 

  • Mercuri AM (2008b) Plant exploitation and ethnopalynological evidence from the Wadi Teshuinat area (Tadrart Acacus, Libyan Sahara). J Archaeol Sci 35(6):1619–1642

    Article  Google Scholar 

  • Mercuri AM, Allevato E, Arobba D et al (2015) Pollen and macroremains from Holocene archaeological sites: a dataset for the understanding of the bio-cultural diversity of the Italian landscape. Rev Palaeobot Palyno 218:250–266

    Article  Google Scholar 

  • Mercuri AM, Fornaciari R, Gallinaro M et al (2018) Plant behaviour through human imprints and the cultivation of wild cereals in Holocene Sahara. Nat Plants 4:71–81, https://doi.org/10.1038/s41477-017-0098-1

  • Mercuri AM, Garcea EAA (2007) The impact of hunter/gatherers on the vegetation in the central Sahara during the early Holocene. In: Cappers RTJ (ed) Fields of change: progress in African archaeobotany. Groningen, Barkhuis

    Google Scholar 

  • Mukhopadhyay SK, Khara AB, Ghosh BC (1972) Nature and intensity of competition of weeds with direct-seeded upland IR8 rice crop. Int Rice Community Newsl 21(2):10–14

    Google Scholar 

  • Oliver D and auct suc (eds) (1917) Gramineae. Fl Trop Afr 9:114

    Google Scholar 

  • Olmi L, Mercuri AM, Gilbert MTP et al (2012) Morphological and genetic analyses of early mid-Holocene wild cereals from the Takarkori rockshelter (central Sahara, Libya): first results and prospects. In: Fahmy AG, Kahlheber S, D’Andrea AC (eds) Windows on the African past: contemporary approaches to African archaeobotany. Reports in African archaeology 3. Africa Magna Verlag, Frankfurt

    Google Scholar 

  • Orrù M, Grillo O, Lovicu G et al (2013) Morphological charachterisation of Vitis vinifera L. seeds by image analysis and comparison with archaeological remains. Veg Hist Archaeobot 22:231–242

    Article  Google Scholar 

  • Ozenda P (1958) Flore du Sahara septentrional et Central. CNRS, Paris

    Google Scholar 

  • Ozenda P (2000) Les végétaux: organisation et diversité biologique. Dunod, Paris

    Google Scholar 

  • Pearsall DM (1989) Paleoethnobotany, A handbook of procedures. Academic Press, London

    Google Scholar 

  • Phillips SM (1995) Flora of Ethiopia and Eritrea: volume 7. Poaceae (Gramineae). The National Herbarium, Biology Department, Science Faculty, Addis Ababa University, Addis Ababa

    Google Scholar 

  • Renfrew JM (1973) Palaeoethnobotany, the prehistoric food plants of the Near East and Europe. Columbia University Press, New York

    Google Scholar 

  • Schulz E, Adamou A (1992) Leben in der Südlichen. Die traditionelle Nutzung der Vegetation im Nord-Niger Sahara. Geographisches Institut, Würzburg

    Google Scholar 

  • Senda T, Hiraoka Y, Tominaga T (2006) Inheritance of seed shattering in Lolium temulentum and L. persicum hybrids. Genet Resour Crop Ev 20:633–643

    Google Scholar 

  • Sharp D, Simon BK (2002) AusGrass: grasses of Australia. CSIRO Publishing/Australian Biological Resources Study (ABRS), Melbourne

    Google Scholar 

  • Sheriff AS, Siddiqi MA (1988) Poaceae. In: AA El-Gadi (ed) Flora of Libya 145, Tripoli

    Google Scholar 

  • Smith CW, Frederiksen RA (2000) Sorghum: origin, history, technology, and production, vol. 2. Wiley, New Jersey

    Google Scholar 

  • Snowden JD (1955) The wild fodder Sorghums of the section Eu-Sorghum. J Linn Soc Lond Bot 55(358):191–260

    Article  Google Scholar 

  • Spahillari M, Hammer K, Gladis T et al (1999) Weeds as part of agrobiodiversity. Outlook on Agr 28:188–199

    Article  Google Scholar 

  • Täckholm V, Drar M (1973) Flora of Egypt, vol II. Otto Koeltz Antiquariat, Koenigstein

    Google Scholar 

  • Tafuri MA, Bentley RA, Manzi G et al (2006) Mobility and kinship in the prehistoric Sahara: Strontium isotope analysis of Holocene human skeletons from the Acacus Mts. (southwestern Libya). J Anthropol Archaeol 25(3):390–402

    Article  Google Scholar 

  • Tanaka T (1976) Tanaka’s cyclopaedia of edible plants of the world. Keigaku Publishing, Tokyo

    Google Scholar 

  • Tanno K, Willcox G (2006) How fast was wild wheat domesticated? Science 311:1886

    Article  CAS  PubMed  Google Scholar 

  • Tubiana MJ, Tubiana J (1977) The Zaghawa from an ecological perspective; food gathering, the pastoral system, tradition and development of the Zaghawa of the Sudan and the Chad. AA Balkema, Rotterdam

    Google Scholar 

  • Walker MJ, Berkelhammer M, Björck S et al (2012) Formal subdivision of the Holocene Series/Epoch: a Discussion Paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). J Quat Sci 27(7):649–659

    Article  Google Scholar 

  • Wasylikowa K (1997) Flora of the 8000 years old archaeological site E-75-6 at Nabta Playa, Western Desert, Southern Egypt. Acta Palaeobot 37(2):99–205

    Google Scholar 

  • Wasylikowa K, Dahlberg J (1999) Sorghum in the economy of the early Neolithic nomadic tribes at Nabta Playa, Southern Egypt. In: The exploitation of plant resources in ancient Africa. Springer, US

    Chapter  Google Scholar 

  • Weiss E, Kislev ME, Hartmann A (2006) Autonomous cultivation before domestication. Science 5780:1608

    Article  Google Scholar 

  • Willcox G (2004) Measuring grain size and identifying Near Eastern cereal domestication: evidence from the Euphrates valley. J Archaeol Sci 31:145–150

    Article  Google Scholar 

  • Willcox G, Stordeur D (2012) Large-scale cereal processing before domestication during the tenth millennium cal BC in northern Syria. Antiquity 86:99–114

    Article  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the Old World, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the Old World: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford University Press on Demand

    Chapter  Google Scholar 

Web Sites

Download references

Acknowledgements

We thank the Italian-Libyan Archaeological Mission in the Acacus and Messak, directed by Savino di Lernia, which allowed the sampling and the analysis of the plant remains from Takarkori. The research was part of the PhD project of R.F. at the School Agri-food Science, Technologies and Bio-technologies (University of Modena and Reggio Emilia). Funds were provided by the project “SELCE—SELvatici CEreali: il futuro nella risposta delle piante ai cambiamenti climatici”, sect. Scientific and Technological Research (Sime n.2015.0033), funded by the FCRMO-Fondazione Cassa di Risparmio di Modena, directed by A.M.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Fornaciari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fornaciari, R., Arru, L., Terenziani, R., Mercuri, A.M. (2018). The Role of Morphometry to Delineate Changes in the Spikelet Shape of Wild Cereals: The Case Study of Takarkori (Holocene, Central Sahara, SW Libya). In: Mercuri, A., D'Andrea, A., Fornaciari, R., Höhn, A. (eds) Plants and People in the African Past. Springer, Cham. https://doi.org/10.1007/978-3-319-89839-1_7

Download citation

Publish with us

Policies and ethics