Skip to main content

Interactions of Cadmium with Signaling Molecules

  • Chapter
  • First Online:
Cadmium Interaction with Animal Cells

Abstract

Cadmium has no known function in higher organisms, which have evolved in an essentially cadmium-free environment until the last several hundred years of industrial activity. Thus, cadmium’s interactions with biological molecules are generally fortuitous and determined by its inorganic chemistry. In biological systems, it exists exclusively in the Cd2+ state as the only ionized form, and it is somewhat unique in showing properties both of a Ca2+ mimic (by virtue of its ionic radius) and of a “soft” sulfur-binding ion (with polarizable d electrons). We review here the interactions of Cd2+ with cellular signaling systems; these are broad and non-specific, and result in interactions with both Ca2+ signaling and thiol-dependent redox systems, sometimes with ambiguous consequences. The chapter focuses on interactions more than consequences, as the latter are often very complex in origin, but can sometimes be simplified by collecting some of the interactions that have been observed. We discuss some of the general effects of Cd2+ on cellular Ca2+ levels, with signaling implications, and also some of the major interactions of Cd2+ with Ca2+ binding sites in proteins. A good part of our discussion is of effects of Cd2+ on signaling pathways through kinase activation, phosphatase inhibition, modulation of second messengers, and effects on levels of growth factors and transcription factors. It will be seen that there is a lot of empirical data here that are only partially understood on the basis of Cd2+ chemistry. Cadmium regulation of thiol-dependent redox chemistry is also discussed, and some new directions in redox sensing are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kinraide TB (2009) Improved scales for metal ion softness and toxicity. Environ Toxicol Chem 28:525–533

    Article  CAS  PubMed  Google Scholar 

  2. Jacobson KB, Turner JE (1980) The interaction of cadmium and certain other metal ions with proteins and nucleic acids. Toxicol 16:1–37

    Article  CAS  Google Scholar 

  3. Wang Z, Templeton DM (1996) Cellular factors mediate cadmium-dependent actin depolymerization. Toxicol Appl Pharmacol 139:115–121

    Article  CAS  PubMed  Google Scholar 

  4. Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R, Pinton P (2008) Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmiuminduced apoptosis. Cell Calcium 43:184–195

    Article  CAS  PubMed  Google Scholar 

  5. Chow FA, Means AR (2007) The calcium/calmodulin-dependent protein kinase cascades. In: Krebs J, Michalak M (eds) New comprehensive biochemistry, vol 41. Elsevier, pp 345–364

    Google Scholar 

  6. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  7. Falcke M (2004) Reading the patterns in living cells—The physics of Ca2+ signaling. Adv Phys 53:255–440

    Article  CAS  Google Scholar 

  8. Cheung WY (1988) Calmodulin and its activation by cadmium ion. Ann NY Acad Sci 522:74–87

    Article  CAS  PubMed  Google Scholar 

  9. Roderick HL, Cook SJ (2008) Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 8:361–375

    Article  CAS  PubMed  Google Scholar 

  10. Thévenod F (2009) Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharmacol 238:221–239

    Article  PubMed  CAS  Google Scholar 

  11. Wang Z, Chin TA, Templeton DM (1996) Calcium-independent effects of cadmium on actin assembly in mesangial and vascular smooth muscle cells. Cell Motil Cytoskelet 32:208–222

    Article  Google Scholar 

  12. Smith JB, Dwayer SD, Smith L (1989) Cadmium evokes inositol polyphosphate formation and calcium mobilization. Evidence for a cell surface receptor that cadmium stimulates and zinc antagonizes. J Biol Chem 264:7115–7118

    CAS  PubMed  Google Scholar 

  13. Xie Z, Zhang Y, Li A, Li P, Ji W, Huang D (2010) Cd-induced apoptosis was mediated by the release of Ca2+ from intracellular Ca storage. Toxicol Lett 192:115–118

    Article  CAS  PubMed  Google Scholar 

  14. Hague F, Matifat F, Louvet L, Brûle G, Collin T (2000) The carcinogen Cd2+ activates InsP(3)-mediated Ca2+ release through a specific metal ion receptor in Xenopus oocyte. Cell Signal 12:419–424

    Article  CAS  PubMed  Google Scholar 

  15. Smith L, Pijuan V, Zhuang Y, Smith JB (1992) Reversible desensitization of fibroblasts to cadmium receptor stimuli: evidence that growth in high zinc represses a xenobiotic receptor. Exp Cell Res 202:174–182

    Article  CAS  PubMed  Google Scholar 

  16. Chen YC, Smith JB (1992) A putative lectin-binding receptor mediates cadmium-evoked calcium release. Toxicol Appl Pharmacol 117:249–256

    Article  CAS  PubMed  Google Scholar 

  17. Lawal AO, Ellis EM (2012) Phospholipase C mediates cadmium-dependent apoptosis in HEK 293 cells. Basic Clin Pharmacol Toxicol 110:510–517

    Article  CAS  PubMed  Google Scholar 

  18. Åkerman KE, Honkaniemi J, Scott IG, Anderson LC (1985) Interaction of Cd2+ with the calmodulin-activated (Ca2+Mg2+)-ATPase activity of human erythrocyte ghosts. Biochim Biophys Acta 845:48–53

    Article  PubMed  Google Scholar 

  19. Visser GJ, Peters PH, Theuvenet AP (1993) Cadmium ion is a non-competitive inhibitor of red cell Ca2+)-ATPase activity. Biochim Biophys Acta 1152:26–34

    Article  CAS  PubMed  Google Scholar 

  20. Liu C-T, Chou M-Y, Lin C-H, Wu SM (2012) Effects of ambient cadmium with calcium on mRNA expressions of calcium uptake related transporters in zebrafish (Danio rerio) larvae. Fish Physiol Biochem 38:977–988

    Article  CAS  PubMed  Google Scholar 

  21. Oshiro S, Nozawa K, Hori M, Zhang C, Hashimoto Y, Kitajima S, Kawamura K-I (2002) Modulation of iron regulatory protein-1 by various metals. Biochem Biophys Res Commun 290:213–218

    Article  CAS  PubMed  Google Scholar 

  22. Templeton DM, Liu Y (2010) Multiple roles of cadmium in cell death and survival. Chemico-Biol Interact 188:267–275

    Article  CAS  Google Scholar 

  23. Wayman GA, Tokumitsu H, Davare MA, Soderling TR (2011) Analysis of CaM-kinase signaling in cells. Cell Calcium 50:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chao SH, Suzuki Y, Zysk JR, Cheung WY (1984) Activation of calmodulin by various metal cations as a function of ionic radius. Mol Pharmacol 26:75–82

    CAS  PubMed  Google Scholar 

  25. Blazka ME, Shaikh ZA (1991) Differences in cadmium and mercury uptakes by hepatocytes: role of calcium channels. Toxicol Appl Pharmacol 110:355–363

    Article  CAS  PubMed  Google Scholar 

  26. Sutoo DE, Akiyama K, Fujii N, Matsushita K (1988) 1H-NMR studies of calmodulin: various divalent cation-induced conformational changes. Kitasato Arch Exp Med 61:149–160

    CAS  PubMed  Google Scholar 

  27. Suzuki Y, Chao SH, Zysk JR, Cheung WY (1985) Stimulation of calmodulin by cadmium ion. Arch Toxicol 57:205–211

    Article  CAS  PubMed  Google Scholar 

  28. Liu W, Zhao H, Wang Y, Jiang C, Xia P, Gu J, Liu X, Bian J, Yuan Y, Liu Z (2014) Calcium–calmodulin signaling elicits mitochondrial dysfunction and the release of cytochrome c during cadmium-induced apoptosis in primary osteoblasts. Toxicol Lett 224:1–6

    Article  CAS  PubMed  Google Scholar 

  29. Xiao W, Liu Y, Templeton DM (2009) Pleiotropic effects of cadmium in mesangial cells. Toxicol Appl Pharmacol 238:315–326

    Article  CAS  PubMed  Google Scholar 

  30. Harris TJ, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nature Rev Mol Cell Biol 11:502–514

    Article  CAS  Google Scholar 

  31. Marie PJ, Haÿ E, Modrowski D, Revollo L, Mbalaviele G, Civitelli R (2014) Cadherin-mediated cell–cell adhesion and signaling in the skeleton. Calcif Tiss Int 94:46–54

    Article  CAS  Google Scholar 

  32. Prozialeck WC (2000) Evidence that E-cadherin may be a target for cadmium toxicity in epithelial cells. Toxicol Appl Pharmacol 164:231–249

    Article  CAS  PubMed  Google Scholar 

  33. Prozialeck WC, Lamar PC (1999) Interaction of cadmium (Cd2+) with a 13-residue polypeptide analog of a putative calcium-binding motif of E-cadherin. Biochim Biophys Acta 1451:93–100

    Article  CAS  PubMed  Google Scholar 

  34. Prozialeck WC, Lamar PC (1997) Cadmium (Cd2+) disrupts E-cadherin-dependent cell-cell junctions in MDCK cells. In Vitro Cell Dev Biol Anim 33:516–526

    Article  CAS  PubMed  Google Scholar 

  35. Prozialeck WC, Lamar PC, Lynch SM (2003) Cadmium alters the localization of N-cadherin, E-cadherin, and beta-catenin in the proximal tubule epithelium. Toxicol Appl Pharmacol 189:180–195

    Article  CAS  PubMed  Google Scholar 

  36. Park CS, Kim OS, Yun S-M, Jo SA, Jo I, Koh YH (2008) Presenilin 1/gamma-secretase is associated with cadmium-induced E-cadherin cleavage and COX-2 gene expression in T47D breast cancer cells. Toxicol Sci 106:413–422

    Article  CAS  PubMed  Google Scholar 

  37. Li Z, Kim SH, Higgins JM, Brenner MB, Sacks DB (1999) IQGAP1 and calmodulin modulate E-cadherin function. J Biol Chem 274:37885–37892

    Article  CAS  PubMed  Google Scholar 

  38. Chua BT, Guo K, Li P (2000) Direct cleavage by the calcium-activated protease calpain can lead to inactivation of caspases. J Biol Chem 275:5131–5135

    Article  CAS  PubMed  Google Scholar 

  39. Choong G, Liu Y, Templeton DM (2014) Interplay of cadmium and calcium in mediating cadmium toxicity. Chemico-Biol Interact 211:54–65

    Article  CAS  Google Scholar 

  40. Khorchid A, Ikura M (2002) How calpain is activated by calcium. Nature Struct Biol 9:239–241

    Article  CAS  PubMed  Google Scholar 

  41. Oh S-H, Lee B-H, Lim S-C (2004) Cadmium induces apoptotic cell death in WI 38 cells via caspase-dependent Bid cleavage and calpain-mediated mitochondrial Bax cleavage by Bcl-2-independent pathway. Biochem Pharmacol 68:1845–1855

    Article  CAS  PubMed  Google Scholar 

  42. Yang PM, Chen HC, Tsai JS, Lin LY (2007) Cadmium induces Ca2+-dependent necrotic cell death through calpain-triggered mitochondrial depolarization and reactive oxygen species-mediated inhibition of nuclear factor-κB activity. Chem Res Toxicol 20:406–415

    Article  CAS  PubMed  Google Scholar 

  43. Thévenod F, Lee W-K (2013) Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 87:1743–1786

    Article  PubMed  CAS  Google Scholar 

  44. Venkataraman K, Futerman AH (2000) Ceramide as a second messenger: sticky solutions to sticky problems. Trends Cell Biol 10:408–412

    Article  CAS  PubMed  Google Scholar 

  45. Lee W-K, Thévenod F (2008) Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis: lessons from in vitro cadmium toxicity studies. Biochem Pharmacol 76:1323–1332

    Article  CAS  PubMed  Google Scholar 

  46. Liu F, Wang XY, Zhou XP, Liu ZP, Song XB, Wang ZY, Wang L (2017) Cadmium disrupts autophagic flux by inhibiting cytosolic Ca2+-dependent autophagosome-lysosome fusion in primary rat proximal tubular cells. Toxicology 383:13–23

    Article  CAS  PubMed  Google Scholar 

  47. Wang H, Zhai N, Chen Y, Xu H, Huang K (2017) Cadmium induces Ca2+ mediated, calpain-1/caspase-3-dependent apoptosis in primary cultured rat proximal tubular cells. J Inorg Biochem 172:16–22

    Article  CAS  PubMed  Google Scholar 

  48. Templeton DM (2000) Metal ions and the cytoskeleton. In: Zalups RF, Koropatnick J (eds) Molecular biology and toxicology of metals. Taylor and Francis, London, pp 460–476

    Google Scholar 

  49. Carlier M-F (1991) Actin: protein structure and filament dynamics. J Biol Chem 266:1–4

    CAS  PubMed  Google Scholar 

  50. Carlier M-F, Valentin-Ranc C, Combeau C, Fievez S, Pantoloni D (1994) Actin polymerization: regulation by divalent metal ion and nucleotide binding, ATP hydrolysis and binding of myosin. Adv Exp Biol Med 358:71–81

    Article  CAS  Google Scholar 

  51. Gershman LG, Selden LA, Kinosian HJ, Estes JE (1994) Actin-bound nucleotide/divalent cation interactions. Adv Exp Biol Med 358:35–49

    Article  CAS  Google Scholar 

  52. Furukawa R, Maselli A, Thomson SA, Lim RW, WStokes JV, Fechheimer M (2003) Calcium regulation of actin crosslinking is important for function of the actin cytoskeleton in Dictyostelium. J Cell Sci 116:187–196

    Article  CAS  PubMed  Google Scholar 

  53. Mills JW, Ferm VH (1989) Effect of cadmium on F-actin and microtubules of Madin-Darby canine kidney cells. Toxicol Appl Pharmacol 101:245–254

    Article  CAS  PubMed  Google Scholar 

  54. Prozialeck WC, Niewenhuis RJ (1991) Cadmium (Cd2+) disrupts intercellular junctions and actin filaments in LLC-PK1 cells. Toxicol Appl Pharmacol 107:81–97

    Article  CAS  PubMed  Google Scholar 

  55. Barrouillet MP, Potier M, Cambar J (1999) Cadmium nephrotoxicity assessed in isolated rat glomeruli and cultured mesangial cells: evidence for contraction of glomerular cells. Exp Nephrol 7:251–258

    Article  CAS  PubMed  Google Scholar 

  56. L’Azou B, Dubus I, Ohayon-Courtès C, Labouyrie JP, Perez L, Pouvreau C, Juvet L, Cambar J (2002) Cadmium induces direct morphological changes in mesangial cell culture. Toxicol 179:233–245

    Article  Google Scholar 

  57. Dalle-Donne I, Milzani A, Colombo R (1997) Actin assembly by cadmium ions. Biochim Biophys Acta 1357:5–17

    Article  CAS  Google Scholar 

  58. Go Y-M, Orr M, Jones DP (2013) Actin cytoskeleton redox proteome oxidation by cadmium. Am J Physiol 305:L831–L843

    CAS  Google Scholar 

  59. Ayscough KR (1998) In vivo functions of actin binding proteins. Curr Opin Cell Biol 10:102–111

    Article  CAS  PubMed  Google Scholar 

  60. Carpenter CL (2000) Actin cytoskeleton and cell signaling. Crit Care Med 28(4 Suppl):N94–N99

    Article  CAS  PubMed  Google Scholar 

  61. Vandekerchove J (1993) Actins. In: Kreis T, Vale R (eds) Guidebook to the cytoskeletal and motor proteins. Oxford University Press, Oxford, pp 13–15

    Google Scholar 

  62. Welch MD, Mullins RD (2002) Cellular control of actin nucleation. Annu Rev Cell Dev Biol 18:247–288

    Article  CAS  PubMed  Google Scholar 

  63. Gremm D, Wegner A (1999) Co-operative binding of Ca2+ ions to the regulatory binsing sites of gelsolin. Eur J Biochem 262:330–334

    Article  CAS  PubMed  Google Scholar 

  64. Gremm D, Wegner A (2000) Gelsolin as a calcium-regulated actin filament-capping protein. Eur J Biochem 267:4339–4345

    Article  CAS  PubMed  Google Scholar 

  65. Apostolova MD, Christova T, Templeton DM (2006) Involvement of gelsolin in cadmium-induced disruption of the mesangial cell cytoskeleton. Tox Sci 89:465–474

    Article  CAS  Google Scholar 

  66. Kazmirski SL, Isaacson RL, An C, Buckle A, Johnson CM, Daggett V, Fersht AR (2002) Loss of a metal-binding site in gelsolin leads to familial amyloidosis–finnish type. Nature Struct Biol 9:112–116

    Article  CAS  PubMed  Google Scholar 

  67. Chang LF, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  CAS  PubMed  Google Scholar 

  68. Chuang SM, Wang IC, Yang JL (2000) Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium. Carcino 21:1423–1432

    Article  CAS  Google Scholar 

  69. Garrington TP, Johnson GL (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opini Cell Biol 11:211–218

    Article  CAS  Google Scholar 

  70. Tibbles LA, Woodgett JR (1999) The stress-activated protein kinase pathways. Cell Mol Life Sci 55:1230–1254

    Article  CAS  PubMed  Google Scholar 

  71. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849

    Article  CAS  PubMed  Google Scholar 

  72. Galan A, Garcia-Bermejo ML, Troyano A, Vilaboa NE, De Blas E, Kazanietz MG, Aller P (2000) Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells. J Biol Chem 275:11418–11424

    Article  CAS  PubMed  Google Scholar 

  73. Huang CS, Zhang QW, Li JX, Shi XL, Castranova V, Ju G, Costa M, Dong ZG (2001) Involvement of Erks activation in cadmium-induced AP-1 transactivation in vitro and in vivo. Mol Cell Biochem 222:141–147

    Article  CAS  PubMed  Google Scholar 

  74. Elbirt KK, Whitmarsh AJ, Davis RJ, Bonkovsky HL (1998) Mechanism of sodium arsenite-mediated induction of heme oxygenase-1 in hepatoma cells. J Biol Chem 273:8922–8931

    Article  CAS  PubMed  Google Scholar 

  75. Chuang SM, Yang JL (2001) Comparison of roles of three mitogen-activated protein kinases induced by chromium(VI) and cadmium in non-small-cell lung carcinoma cells. Mol Cell Biochem 222:85–95

    Article  CAS  PubMed  Google Scholar 

  76. Hung J-J, Cheng T-J, Lai Y-K, Chang MD (1998) Differential activation of p38 mitogen-activated protein kinase and extracellular signal-regulated protein kinases confers cadmium-induced HSP70 expression in 9L rat brain tumor cells. J Biol Chem 273:31924–31931

    Article  CAS  PubMed  Google Scholar 

  77. Wang Z, Templeton DM (1998) Induction of c-fos proto-oncogene in mesangial cells by cadmium. J Biol Chem 273:73–79

    Article  CAS  PubMed  Google Scholar 

  78. Templeton DM, Wang Z, Miralem T (1998) Cadmium, cell signaling, and oncogene expression. Toxicol Lett 95:1–8

    Article  CAS  PubMed  Google Scholar 

  79. Ding W, Templeton DM (2000) Activation of parallel mitogen-activated protein kinase cascades and induction of c-fos by cadmium. Toxicol Appl Pharmacol 162:93–99

    Article  CAS  PubMed  Google Scholar 

  80. Ding W, Templeton DM (2000) Stress-activated protein kinase-dependent induction of c-fos by Cd2+ is mediated by MKK7. Biochem Biophys Res Commun 273:718–722

    Article  CAS  PubMed  Google Scholar 

  81. Liu Y, Templeton DM (2008) Initiation of caspase-independent death in mouse mesangial cells by Cd2+: involvement of p38 kinase and CaMK-II. J Cell Physiol 217:307–318

    Article  CAS  PubMed  Google Scholar 

  82. Gunawardana CG, Martinez RE, Xiao W, Templeton DM (2006) Cadmium inhibits both intrinsic and extrinsic apoptotic pathways in renal mesaqngial cells. Am J Physiol 290:F1074–F1082

    CAS  Google Scholar 

  83. Brama M, Politi L, Santini P, Migliaccio S, Scandurra R (2012) Cadmium-induced apoptosis and necrosis in human osteoblasts: role of caspases and mitogen-activated protein kinases pathways. J Endocrinol Invest 35:198–208

    CAS  PubMed  Google Scholar 

  84. Zhao H, Liu W, Wang Y, Dai N, Gu J, Yuan Y, Liu X, Bian J, Liu Z-P (2015) Cadmium induces apoptosis in primary rat osteoblasts through caspase and mitogen-activated protein kinase pathways. J Vet Sci 16:297–306

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wei T, Jia J, Wada Y, Kapron CM, Liu J (2017) Dose dependent effects of cadmium on tumor angiogenesis. Oncotarget 8:44944–44959

    PubMed  PubMed Central  Google Scholar 

  86. Hook SS, Means AR (2001) Ca2+/CaM-dependent kinases: from activation to function. Annu Rev Pharmacol Toxicol 41:471–505

    Article  CAS  PubMed  Google Scholar 

  87. Hudmon A, Schulman H (2002) Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71:473–510

    Article  CAS  PubMed  Google Scholar 

  88. Lin YC, Redmond L (2008) CaMKIIbeta binding to stable F-actin in vivo regulates F-actin filament stability. Proc Natl Acad Sci U S A 105:15791–15796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sanabria H, Swulius MT, Kolodziej SJ, Liu J, Waxham MN (2009) βCaMKII regulates actin assembly and structure. J Biol Chem 284:9770–9780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jones RJ, Jourd’heuil D, Salerno JC, Smith SM, Singer HA (2007) iNOS regulation by calcium/calmodulin-dependent protein kinase II in vascular smooth muscle. Am J Physiol 292:H2634–H2642

    CAS  Google Scholar 

  91. Liu Y, Templeton DM (2013) Involvement of CaMK-IIδ and gelsolin in Cd2+-dependent cytoskeletal effects in mesangial cells. J Cell Physiol 228:78–86

    Article  CAS  Google Scholar 

  92. Caran N, Johnson LD, Jenkins KJ, Tombes RM (2001) Cyosolic targeting domains of gamma and delta calmodulin-dependent protein kinase II. J Biol Chem 276:42514–42519

    Article  CAS  PubMed  Google Scholar 

  93. Liu Y, Templeton DM (2010) Role of the cytoskeleton in Cd2+-induced death of mouse mesangial cells. Can J Physiol Pharmacol 88:341–352

    Google Scholar 

  94. Liu Y, Templeton DM (2007) Cadmium activates CaMK-II and initiates CaMK-II-dependent apoptosis in mesangial cells. FEBS Lett 581:1481–1486

    Article  CAS  PubMed  Google Scholar 

  95. Templeton DM, Liu Y (2013) Effects of cadmium on the actin cytoskeleton in renal mesangial cells. Can J Physiol Pharmacol 91:1–7

    Article  CAS  PubMed  Google Scholar 

  96. Lin WN, Luo SF, Wu CB, Lin CC, Yang CM (2008) Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: involvement of Src/EGFR/PI3-K/Akt pathway. Toxicol Appl Pharmacol 228:256–268

    Article  CAS  PubMed  Google Scholar 

  97. Yano N, Suzuki D, Endoh M, Zhao TC, Padbury JF, Tseng YT (2007) A novel phosphoinositide 3-kinase-dependent pathway for angiotensin II/AT-1 receptor mediated induction of collagen synthesis in MES-13 mesangial cells. J Biol Chem 282:18819–18830

    Article  CAS  PubMed  Google Scholar 

  98. Fujiki K, Inamura H, Matsuoka M (2013) Phosphorylation of FOXO3a by PI3K/Akt pathway in HK-2 renal proximal tubular epithelial cells exposed to cadmium. Arch Toxicol 87:2119–2127

    Article  CAS  PubMed  Google Scholar 

  99. Ahmad F, Nidadavolu P, Durgadoss L, Ravindranath V (2014) Critical cysteines in Akt1 regulate its activity and proteasomal degradation: implications for neurodegenerative diseases. Free Radic Biol Med 74:118–128

    Article  CAS  PubMed  Google Scholar 

  100. Li FJ, Surolia R, Li H, Wang Z, Liu G, Liu RM, Mirov SB, Athar M, Thannickal VJ, Antony VB (2017) Low-dose cadmium exposure induces peribronchiolar fibrosis through site-specific phosphorylation of vimentin. Am J Physiol 313:L80–L91

    Article  Google Scholar 

  101. Yuan Y, Wang Y, Hu FF, Jiang C, Y., Zhang YJ, Yang JL, Zhao SW, Gu JH, Liu XZ, Bian JC, Liu ZP (2016) Cadmium activates reactive oxygen species-dependent AKT/mTOR and mitochondrial apoptotic pathways in neuronal cells. Biomed Environ Sci 29:117–126

    Google Scholar 

  102. Fujiki K, Inamura H, Miyayama T, Matsuoka M (2017) Involvement of Notch1 signaling in malignant progression of A549 cells subjected to prolonged cadmium exposure. J Biol Chem 292:7942–7953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wehrle-Haller B (2012) Assembly and disassembly of cell matrix adhesions. Curr Opin Cell Biol 24:1–13

    Article  CAS  Google Scholar 

  104. Katz BZ, Romer L, Miyamoto S, Volberg T, Matsumoto K, Cukierman E, Geiger B, Yamada KM (2003) Targeting membrane-localized focal adhesion kinase to focal adhesions: roles of tyrosine phosphorylation and Src family kinases. J Biol Chem 278:29115–29120

    Article  CAS  PubMed  Google Scholar 

  105. Choong G, Liu Y, Templeton DM (2013) Cadmium affects focal adhesion kinase (FAK) in mesangial cells: involvement of CaMK-II and the actin cytoskeleton. J Cell Biochem 114:1832–1842

    Article  CAS  PubMed  Google Scholar 

  106. Wei Z, Shaikh ZA (2017) Cadmium stimulates metastasis-associated phenotype in triple-negative breast cancer cells through integrin and beta-catenin signaling. Toxicol Appl Pharmacol 328:70–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hu X, Fernandes J, Jones DP, Go Y-M (2017) Cadmium stimulates myofibroblast differentiation and mouse lung fibrosis. Toxicol 383:50–56

    Article  CAS  Google Scholar 

  108. Brooks SA, Martin E, Smeester L, Grace MR, Boggess K, Fry RC (2016) miRNAs as common regulators of the transforming growth factor (TGF)-b pathway in the preeclamptic placenta and cadmium-treated trophoblasts: Links between the environment, the epigenome and preeclampsia. Food Chem Toxicol 98:50–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Brooks SA, Fry RC (2017) Cadmium inhibits placental trophoblast cell migration via miRNA regulation of the transforming growth factor beta (TGF-β) pathway. Food Chem Toxicol 109:721–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sunahara RK, Taussig R (2002) Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2:168–184

    Article  CAS  PubMed  Google Scholar 

  111. Zhang Q, Zou P, Zhan H, Zhang M, Zhng L, Ge R-S, Huang Y (2011) Dihydrolipoamide dehydrogenase and cAMP are associated with cadmium-mediated Leydig cell damage. Toxicol Lett 205:183–189

    Article  CAS  PubMed  Google Scholar 

  112. Wätjen W, Benters J, Haase H, Schwede F, Jastorff B, Beyersmann D (2001) Zn2+ and Cd2+ increase the cyclic GMP level in PC12 cells by inhibition of the cyclic nucleotide phosphodiesterase. Toxicol 157:167–175

    Article  PubMed  Google Scholar 

  113. Veeriah V, Saran U, Swaminathan A, Balaguru UM, Thangaraj P, Nagarajan S, Rajendran VK, Chatterjee S (2015) Cadmium-induced embryopathy: nitric oxide rescues teratogenic effects of cadmium. Toxicol Sci 144:90–104

    Article  CAS  PubMed  Google Scholar 

  114. Muldoon LL, Rodland KD, Magun BE (1988) Transforming growth factor beta and epidermal growth factor alter calcium influx and phosphatidylinositol turnover in rat-1 fibroblasts. J Biol Chem 263:18834–18841

    CAS  PubMed  Google Scholar 

  115. Vignes M, Blanc E, Davos F, Guiramand J, Recasens M (1996) Cadmium rapidly and irreversibly blocks presynaptic phospholipase C-linked metabotropic glutamate receptors. Neurochem Int 29:371–381

    Article  CAS  PubMed  Google Scholar 

  116. Zhou X, Hao W, Shi H, Hou Y, Xu Q (2015) Calcium homeostasis disruption—a bridge connecting cadmium-induced apoptosis, autophagy and tumorigenesis. Oncol Res Treat 38:311–315

    Article  CAS  PubMed  Google Scholar 

  117. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFα-induced death and sustained Jnk activitation by inhibiting MAP kinase phosphatases. Cell 120:649–661

    Article  CAS  PubMed  Google Scholar 

  118. Levinthal DJ, Defranco DB (2005) Reversible oxidation of Erk-directed protein phosphatases drives oxidative toxicity in neuron. J Biol Chem 280:5875–5883

    Article  CAS  PubMed  Google Scholar 

  119. Singh KB, Maret W (2017) The interactions of metal cations and oxyanions with protein tyrosine phosphatase 1B. Biometals 30:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Barajas-Espinosa A, Basye A, Jesse E, Yan H, Quan D, Chen C-A (2014) Redox activation of DUSP4 by N-acetyl cysteine protects endothelial cells from Cd2+-induced apoptosis. Free Radic Biol Med 74:188–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Delalande O, Desvaux H, Godat E, Valleix A, Juno C, Labarre J, Boulard Y (2010) Cadmium—glutathione solution structures provide new insights into heavy metal detoxification. FEBS J 277:5086–5096

    Article  CAS  PubMed  Google Scholar 

  122. Go Y-M, Jones DP (2013) Thiol/disulfide redox states in signaling and sensing. Crit Rev Biochem Mol Biol 48:173–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chin TA, Templeton DM (1993) Protective elevations of glutathione and metallothionein in cadmium-exposed mesangial cells. Toxicol 77:145–156

    Article  CAS  Google Scholar 

  124. Chen J, Shaikh ZA (2009) Activation of Nrf2 by cadmium and its role in protection against cadmium-induced apoptosis in rat kidney cells. Toxicol Appl Pharmacol 241:81–89

    Article  CAS  PubMed  Google Scholar 

  125. Nair AR, Lee W-K, Smeets K, Swennen Q, Sanchez A, Thévenod F, Cuypers A (2015) Glutathione and mitochondria determine acute defense responses and adaptive processes in cadmium-induced oxidative stress and toxicity of the kidney. Arch Toxicol 89:2273–2289

    Article  CAS  PubMed  Google Scholar 

  126. Johansson M, Lundberg M (2007) Glutathionylation of beta-actin via a cysteinyl-sulfenic acid intermediary. BMC Biochem 8:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Gallogly MM, Starke DW, Mieyal JJ (2009) Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antiox Redox Signal 11:1059–1081

    Article  CAS  Google Scholar 

  128. Barrett WC, DeGnore JP, König S, Fales HM, Keng YF, Zhang ZY, Yim MB, Chock PB (1999) Regulation of PTP1B via glutathionylation of the active site cysteine. Biochem 38:6699–6705

    Article  CAS  Google Scholar 

  129. Qanungo S, Starke DW, Pai HV, Mieyal JJ, Nieminen AL (2007) Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFkappaB. J Biol Chem 282:18427–18436

    Article  CAS  PubMed  Google Scholar 

  130. Wang J, Boja ES, Tan W, Tekle E, Fales HM, English S, Mieyal JJ, Chock PB (2001) Reversible glutathionylation regulates actin polymerization in A431 cells. J Biol Chem 276:47763–47766

    Article  CAS  PubMed  Google Scholar 

  131. Dalle-Donne I, Giustarini D, Rossi R, Colombo R, Milzani A (2003) Reversible S-glutathionylation of Cys374 regulates actin filament formation by inducing structural changes in the actin molecule. Free Radic Biol Med 34:23–32

    Article  CAS  PubMed  Google Scholar 

  132. Pastore A, Tozzi G, Gaeta LM, Bertini E, Serafini V, Di Cesare S, Bonetto V, Casoni F, Carrozzo R, Federici G, Piemonte F (2003) Actin glutathionylation increases in fibroblasts of patients with Friedreich’s ataxia. J Biol Chem 278:42588–42595

    Article  CAS  PubMed  Google Scholar 

  133. Chen FC, Ogut O (2006) Decline of contractility during ischemia—reperfusion injury: actin glutathionylation and its effect on allosteric interaction with tropomyosin. Am J Physiol 290:C719–C727

    Article  CAS  Google Scholar 

  134. Dailianis S, Patetsini E, Kaloyianni M (2009) The role of signalling molecules on actin glutathionylation and protein carbonylation induced by cadmium in haemocytes of mussel Mytilus galloprovincialis (Lmk). J Exp Biol 212:3612–3620

    Article  CAS  PubMed  Google Scholar 

  135. Choong G, Liu Y, Xiao W, Templeton DM (2013) Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: implications for cytoskeletal integrity. Toxicol Appl Pharmacol 272:423–430

    Article  CAS  PubMed  Google Scholar 

  136. Sakai J, Li J, Subramanian KK, Mondal S, Bajrami B, Hattori H, Jia Y, Dickinson BC, Zhong J, Ye K, Chang CJ, Ho YS, Zhou J, Luo HR (2012) Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils. Immun 37:1037–1049

    Article  CAS  Google Scholar 

  137. Wang J, Tekle E, Oubrahim H, Mieyal JJ, Stadtman ER, Chock PB (2003) Stable and controllable RNA interference: investigating the physiological function of glutathionylated actin. Proc Natl Acad Sci U S A 100:5103–5106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shelton MD, Mieyal JJ (2008) Regulation by reversible S-glutathionylation: molecular targets implicated in inflammatory diseases. Mol Cell 25:332–346

    CAS  Google Scholar 

  139. Kil IS, Shin SW, Yeo HS, Lee YS, Park JW (2006) Mitochondrial NADP+-dependent isocitrate dehydrogenase protects cadmium-induced apoptosis. Mol Pharmacol 70:1053–1061

    Article  CAS  PubMed  Google Scholar 

  140. Liao BC, Hsieh CW, Lin YC, Wung BS (2010) The glutaredoxin/glutathione system modulates NF-κB activity by glutathionylation of p65 in cinnamaldehyde-treated endothelial cells. Toxicol Sci 116:151–163

    Article  CAS  PubMed  Google Scholar 

  141. Chrestensen CA, Starke DW, Mieyal JJ (2000) Acute cadmium exposure inactivates thioltransferase (glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J Biol Chem 275:26556–26565

    Article  CAS  PubMed  Google Scholar 

  142. Chen C-A, De Pascali F, Basye A, Hemann C, Zweier JL (2013) Redox modulation of eNOS by glutaredoxin-1 through reversible oxidative post-translational modification. Biochem 52:6712–6723

    Article  CAS  Google Scholar 

  143. Comini MA (2016) Measurement and meaning of cellular thiol:disulfide redox status. Free Radic Res 50:246–271

    Article  CAS  PubMed  Google Scholar 

  144. Hansen JM, Zhang H, Jones DP (2006) Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. Free Radic Biol Med 40:138–145

    Article  CAS  PubMed  Google Scholar 

  145. Go Y-M, Orr M, Jones DP (2013) Increased nuclear thioredoxin-1 potentiates cadmium-induced cytotoxicity. Toxicol Sci 131:84–94

    Article  CAS  PubMed  Google Scholar 

  146. Banerjee R, Smith W (2012) Thematic minireview series on redox sensing and regulation. J Biol Chem 287:4395–4396

    Article  CAS  PubMed  Google Scholar 

  147. Cemers CM, Jakob U (2012) Oxidant sensing by reversible disulfide bond formation. J Biol Chem 288:26489–26496

    Article  CAS  Google Scholar 

  148. Jiang F (2016) The expanding list of redox-sensing transcription factors in mammalian cells. J Cell Signal 1:e101. https://doi.org/10.4172/2576-1471.1000e101

  149. Marino SM, Gladyshev VN (2012) Analysis and functional prediction of reactive cysteine residues. J Biol Chem 287:4419–4425

    Article  CAS  PubMed  Google Scholar 

  150. Klomsiri C, Karplus PA, Poole LB (2011) Cysteine-based redox switches in enzymes. Antiox Redox Signal 14:1065–1077

    Article  CAS  Google Scholar 

  151. Wang Y, Yang J, Yi J (2012) Redox sensing by proteins: oxidative modifications on cysteines and the consequent events. Antiox Redox Signal 16:649–657

    Article  CAS  Google Scholar 

  152. Saito R, Suzuki T, Hiramoto K, Asami S, Naganuma E, Suda H, Iso T, Yamamoto H, Morita M, Baird L, Furusawa Y, Negishi T, Ichinose M, Yamamoto M (2015) Characterizations of three major cysteine sensors of Keap1 in stress response. Mol Cell Biol 36:271–284

    PubMed  Google Scholar 

  153. Stewart D, Killeen E, Naquin R, Alam S, Alam J (2003) Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J Biol Chem 278:2396–2402

    Article  CAS  PubMed  Google Scholar 

  154. He X, Chen MG, Ma Q (2008) Activation of Nrf2 in defense against cadmium-induced oxidative stress. Chem Res Toxicol 21:1375–1383

    Article  CAS  PubMed  Google Scholar 

  155. Wang X-Y, Wang Z-Y, Zhu Y-S, Zhu S-M, Fan R-F, Wang L (2018) Alleviation of cadmium-induced oxidative stress by trehalose via inhibiting the Nrf2-Keap1 signaling pathway in primary rat proximal tubular cells. J Biochem Mol Toxicol 32:e22011. https://doi.org/10.1002/jbt.22011

    Article  CAS  Google Scholar 

  156. Dinkova-Kostova AT, Holtzclaw WD, Wakabayashi N (2005) Keap1, the sensor for electrophiles and oxidants that regulates the phase 2 response, is a zinc metalloprotein. Biochem 44:6889–6899

    Article  CAS  Google Scholar 

  157. Bruegge K, Jelkmann W, Metzen E (2007) Hydroxylation of hypoxia-inducible transcription factors and chemical compounds targeting the HIF-hydroxylases. Curr Med Chem 14:1853–1862

    Article  CAS  PubMed  Google Scholar 

  158. Lee G, Won H-S, Lee Y-M, Choi J-W, Oh T-I, Jang J-H, Choi D-K, Lim B-O, Kim YJ, Park J-W, Puigserver P, Lim J-H (2016) Oxidative dimerization of PHD2 is responsible for its inactivation and contributes to metabolic reprogramming via HIF-1α activation. Sci Rep 6:18928. https://doi.org/10.1038/srep18928

  159. Chun YS, Choi E, Kim GT, Choi H, Kim CH, Lee MJ, Kim MS, Park JW (2000) Cadmium blocks hypoxia-inducible factor (HIF)-1-mediated response to hypoxia by stimulating the proteasome-dependent degradation of HIF-1α. Eur J Biochem 267:4198–4204

    Article  CAS  PubMed  Google Scholar 

  160. Jing Y, Liu L-Z, Jiang Y, Zhu Y, Guo NL, Barnett J, Rojanasakul Y, Agani F, Jiang B-H (2012) Cadmium increases HIF-1 and VEGF expression through ROS, ERK, and AKT signaling pathways and induces malignant transformation of human bronchial epithelial cells. Toxicol Sci 125:10–19

    Article  CAS  PubMed  Google Scholar 

  161. Li NX, Karin M (1999) Is NF-κB the sensor of oxidative stress? FASEB J 13:1137–1143

    Article  CAS  PubMed  Google Scholar 

  162. Brigelius-Flohe R, Flohe L (2011) Basic principles and emerging concepts in the redox control of transcription factors. Antiox Redox Sig 15:2335–2381

    Article  CAS  Google Scholar 

  163. Ghosh G, Wang VY, Huang DB, Fusco A (2012) NF-κB regulation: lessons from structures. Immunol Rev 246:36–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Thévenod F, Friedmann JM, Katsen AD, Hauser IA (2000) Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-κB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem 275:1887–1896

    Article  PubMed  Google Scholar 

  165. Lizotte J, Abed E, Signor C, Malu DT, Cuevas J, Kevorkova O, Sanchez-Dardon J, Satoskar A, Scorza T, Jumarie C, Moreau R (2012) Expression of macrophage migration inhibitory factor by osteoblastic cells: protection against cadmium toxicity. Toxicol Lett 215:167–173

    Article  CAS  PubMed  Google Scholar 

  166. Xie J, Shaikh ZA (2006) Cadmium-induced apoptosis in rat kidney epithelial cells involves decrease in nuclear factor-kappa B activity. Toxicol Sci 91:299–308

    Article  CAS  PubMed  Google Scholar 

  167. Zhang H, Li L, Wang Y, Dong F, Chen X, Liu F, Xu D, Yi F, Capron CM, Liu J (2016) NF-κB signaling maintains the survival of cadmium-exposed human renal glomerular endothelial cells. Int J Mol Med 38:417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Field J, Vojtek A, Ballester R, Bolger G, Colicelli J, Ferguson K, Gerst J, Kataoka T, Michaeli T, Powers S, Riggs M, Rodgers L, Wieland I, Wheland B, Wigler M (1990) Cloning and characterization of CAP, the S. cerevisiae gene encoding the 70 kd adenylyl cyclase-associated protein. Cell 61:319–327

    Article  CAS  PubMed  Google Scholar 

  169. Shima F, Okada T, Kido M, Sen H, Tanaka Y, Tamada M, Hu C-D, Yamawaki-Kataoka Y, Kariya K-I, Kataoka T (2000) Association of yeast adenylyl cyclase with cyclase-associated protein CAP forms a second Ras-binding site which mediates its Ras-dependent activation. Mol Cell Biol 20:26–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chaudhry F, Breitsprecher D, Little K, Sharov G, Sokolova O, Goode BL (2013) Srv2/cyclase-associated protein forms hexameric shurikens that directly catalyze actin filament severing by cofilin. Mol Biol Cell 24:31–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Freeman NL, Field J (2000) Mammalian homolog of the yeast adenylyl cyclase associated protein, CAP/Srv2p, regulates actin filament assembly. Cell Motil Cytoskel 45:106–120

    Google Scholar 

  172. Jansen S, Collins A, Golden L, Sokolova O, Goode BL (2014) Structure and mechanism of mouse cyclase-associated protein (CAP1) in regulating actin dynamics. J Biol Chem 289:30732–39742

    Article  CAS  Google Scholar 

  173. Liu Y, Xiao W, Shinde M, Field J, Templeton DM (2018) Cadmium favors F-actin depolymerization in rat renal mesangial cells by site-specific, disulfide-based dimerization of the CAP1 protein. Arch Toxicol 92:1049–1064

    Article  CAS  PubMed  Google Scholar 

  174. Anderson CP, Shen M, Eisenstein RS, Leibold EA (2012) Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta 1823:1468–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Eisenstein RS (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 20:627–662

    Article  CAS  PubMed  Google Scholar 

  176. Vashisht AA, Zumbrennen KB, Huang X, Powers DN, Durazo A, Sun D, Bhaskaran N, Persson A, Uhlen M, Sangfelt O, Spruck C, Leibold EA, Wohlschlegel JA (2009) Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science 326:718–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kühn LC (2003) Regulation of mRNA translation and stability in iron metabolism: is there a redox switch? In: Gitler C, Danon A (eds) Cellular implications of redox signaling. Imperial College Press, London, pp 327–360

    Chapter  Google Scholar 

  178. Popovic Z, Templeton DM (2007) Inhibition of an iron-responsive element/iron regulatory protein-1 complex by ATP binding and hydrolysis. FEBS J 274:3108–3119

    Article  CAS  PubMed  Google Scholar 

  179. Liu Y, Xiao W, Templeton DM (2014) Cadmium-induced aggregation of iron regulatory protein-1. Toxicol 324:108–115

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas M. Templeton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Templeton, D.M., Liu, Y. (2018). Interactions of Cadmium with Signaling Molecules. In: Thévenod, F., Petering, D., M. Templeton, D., Lee, WK., Hartwig, A. (eds) Cadmium Interaction with Animal Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-89623-6_3

Download citation

Publish with us

Policies and ethics