Skip to main content

Clinical Implication of Heat Shock Protein 70 in Kidney Disease

Kidney Diseases and HSP70

  • Chapter
  • First Online:
HSP70 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 14))

Abstract

Heat shock protein (HSP) 70 has been investigated from various aspects in experimental studies, since it is the most abundant form of HSP in cells. HSP 70 is involved in response to various acute and chronic insults of kidney and also other parts of the urinary tract. Although it is not a specific biomarker for any of the kidney diseases, HSP 70 level of body fluids may be beneficial as a biomarker in some specific circumstances, for example for the differential diagnosis of “a children with fever”. The number of possible diseases in this situation is limited and an infection is most likely to be the reason of fever. Additionally, clarifying the exact role of HSP 70 in different kidney diseases enables to discover new therapeutic options in order to prevent renal fibrosis and chronic renal failure in the future. This chapter reviews experimental and clinical studies to find out the opportunities to utilize HSP 70 in daily clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGEs:

advanced glycosylated-end products

AKI:

acute kidney injury

AUC:

area under the curve

CKD:

chronic kidney disease

CSF:

cerebrospinal fluid

EMT:

epithelial-mesenchymal transition

ESRD:

end stage renal disease

GGA:

geranylgeranylacetone

HSP:

heat shock protein

IFNγ:

interferon gamma

IL-18:

interleukin 18

INS:

idiopathic nephrotic syndrome

JAK/STAT:

janus kinase/signal transducers and activators of transcription

KIM-1:

kidney injury molecule type 1

MEK/ERK:

Mitogen-activated protein kinase/ERK kinase/extracellular-signal-regulated kinase

NGAL:

neutrophil gelatinase-associated lipocalin

NF-kB:

nuclear factor kappa B

NOS:

nitric oxide synthase

p-STAT3:

phospho-signal transducer and activator of transcription 3

ROS:

reactive oxygen species

SLK:

Ste20-like kinase

STAT3:

Signal transducer and activator of transcription 3

TGF-β:

transforming growth factor beta

T1DM:

type 1 diabetes mellitus

uHSP70:

urine level of heat shock proetin 70

uHSP/Cr:

urine heat shock protein/creatinine ratio

UTI:

urinary tract infection

WT1:

wilms tumor 1

References

  • Barisić, K., Petrik, J., Rumora, L., Cepelak, I., & Grubisić, T. Z. (2002). Expression of Hsp70 in kidney cells exposed to ochratoxin A. Archives of Toxicology, 76(4), 218–226.

    Article  CAS  PubMed  Google Scholar 

  • Barrera-Chimal, J., Pérez-Villalva, R., Cortés-González, C., et al. (2011). Hsp72 is an early and sensitive biomarker to detect acute kidney injury. EMBO Molecular Medicine, 3(1), 5–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barutta, F., Pinach, S., Giunti, S., et al. (2008). Heat shock protein expression in diabetic nephropathy. American Journal of Physiology. Renal Physiology, 295(6), 1817–1824.

    Article  CAS  Google Scholar 

  • Beck, F. X., Neuhofer, W., & Müller, E. (2000). Molecular chaperones in the kidney: Distribution, putative roles and regulation. American Journal of Physiology. Renal Physiology, 279(2), 203–215.

    Article  Google Scholar 

  • Buraczynska, M., Swatowski, A., Buraczynska, K., Dragan, M., & Ksiazek, A. (2009). Heat-shock protein gene polymorphisms and the risk of nephropathy in patients with Type 2 diabetes. Clinical Science, 116(1), 81–86.

    Article  PubMed  CAS  Google Scholar 

  • Caramori, M. L., & Mauer, M. (2009). Pathogenesis and pathophysiology of diabetic nephropathy. In A. Greenberg (Ed.), Primer on kidney diseases (pp. 214–223). Philadelphia: Saunders.

    Chapter  Google Scholar 

  • Chen, S. C., Guh, J. Y., Chen, H. C., Yang, Y. L., Huang, J. S., & Chuang, L. Y. (2007). Advanced glycation end-product-induced mitogenesis is dependent on Janus kinase 2-induced heat shock protein 70 in normal rat kidney interstitial fibroblast cells. Translational Research, 149(5), 274–281.

    Article  PubMed  CAS  Google Scholar 

  • Crowe, A. V., McArdle, A., McArdle, F., et al. (2007). Markers of oxidative stress in the skeletal muscle of patients on hemodialysis. Nephrology, Dialysis, Transplantation, 22, 1177–1183.

    Article  PubMed  CAS  Google Scholar 

  • Cybulsky, A. V., Guillemette, J., & Papillon, J. (2016). Ste20-like kinase, SLK, activates the heat shock factor 1 – Hsp70 pathway. Biochimica et Biophysica Acta, 1863(9), 2147–2155.

    Article  PubMed  CAS  Google Scholar 

  • Davies, E. L., Bacelar, M. M., Marshall, M. J., Johnson, E., Wardle, T. D., Andrew, S. M., & Williams, J. H. (2006). Heat shock proteins form part of danger signal cascade in response to lipopolysaccharide and GroEL. Clinical and Experimental Immunology, 145(1), 183–189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dinda, A. K., Mathur, M., Guleria, S., Saxena, S., Tiwari, S. C., & Dash, C. (1998). Heat shock protein (HSP) expression and proliferation of tubular cells in end stage renal disease with and without haemodialysis. Nephrology, Dialysis, Transplantation, 13(1), 99–105.

    Article  PubMed  CAS  Google Scholar 

  • Evdokimovskaya, Y., Skarga, Y., Vrublevskaya, V., & Morenkov, O. (2010). Secretion of the heat shock proteins HSP70 and HSC70 by baby hamster kidney (BHK-21) cells. Cell Biology International, 34(10), 985–990.

    Article  PubMed  CAS  Google Scholar 

  • Friedewald, J. J., & Rabb, H. (2004). Inflammatory cells in ischemic acute renal failure. Kidney International, 66(2), 486–491.

    Article  PubMed  Google Scholar 

  • Gotoh, T., Terada, K., Oyadomari, S., & Mori, M. (2004). hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibitingtranslocation of Bax to mitochondria. Cell Death and Differentiation, 11(4), 390–402.

    Article  PubMed  CAS  Google Scholar 

  • Guh, J. Y., Huang, J. S., Chen, H. C., Hung, W. C., Lai, Y. H., & Chuang, L. Y. (2001). Advanced glycation end product-induced proliferation in NRK-49F cells is dependent on the JAK2/STAT5 pathway and cyclin D1. American Journal of Kidney Diseases, 38(5), 1096–1104.

    Article  PubMed  CAS  Google Scholar 

  • Gurbuxani, S., Schmitt, E., Cande, C., et al. (2003). Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene, 22(43), 6669–6678.

    Article  PubMed  CAS  Google Scholar 

  • Jo, S. K., Ko, G. J., Boo, C. S., Cho, W. Y., & Kim, H. K. (2006). Heat preconditioning attenuates renal injury in ischemic ARF in rats: Role of heat-shock protein70 on NF-kappaB-mediated inflammation and on tubular cell injury. Journal of the American Society of Nephrology, 17(11), 3082–3092.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, D., Jäger, R., Mosser, D. D., & Samali, A. (2014). Regulation of apoptosis by heat shock proteins. International Union of Biochemistry and Molecular Biology Life, 66(5), 327–338.

    Article  PubMed  CAS  Google Scholar 

  • Kierulf-Lassen, C., Kristensen, M. L., Birn, H., Jespersen, B., & Nørregaard, R. (2015). No effect of remote ischemic conditioning strategies on recovery from renal ischemia-reperfusion injury and protective molecular mediators. PLoS One, 10(12), e0146109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, M. G., Jung Cho, E., Won Lee, J., et al. (2014). The heat-shock protein-70-induced renoprotective effect is partially mediated by CD4+ CD25+ Foxp3 + regulatory T cells in ischemia/reperfusion-induced acute kidney injury. Kidney International, 85(1), 62–71.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. S., Jung, M. H., Choi, M. Y., et al. (2009). Glutamine attenuates tubular cell apoptosis in acute kidney injury via inhibition of the c-Jun N-terminal kinase phosphorylation of 14-3-3. Critical Care Medicine, 37(6), 2033–2044.

    Article  PubMed  CAS  Google Scholar 

  • Lebherz-Eichinger, D., Ankersmit, H. J., Hacker, S., et al. (2012). HSP27 and HSP70 serum and urine levels in patients suffering from chronic kidney disease. Clinica Chimica Acta, 413(1–2), 282–286.

    Article  CAS  Google Scholar 

  • Lebherz-Eichinger, D., Krenn, C. G., & Roth, G. A. (2013). Keratin 18 and heat-shock protein in chronic kidney disease. Advances in Clinical Chemistry, 62, 123–149.

    Article  PubMed  CAS  Google Scholar 

  • Lin, K. C., Krieg, R. J., Jr., Saborio, P., & Chan, J. C. (1998). Increased heat shock protein-70 in unilateral ureteral obstruction in rats. Molecular Genetics and Metabolism, 65(4), 303–310.

    Article  PubMed  CAS  Google Scholar 

  • Luo, F. C., Zhao, L., Deng, J., et al. (2013). Geranylgeranylacetone protects against morphine-induced hepatic and renal damage in mice. Molecular Medicine Reports, 7(2), 694–700.

    Article  PubMed  CAS  Google Scholar 

  • Madamanchi, N. R., Li, S., Patterson, C., & Runge, M. S. (2001). Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(3), 321–326.

    Article  PubMed  CAS  Google Scholar 

  • Maddock, A. L., & Westenfelder, C. (1996). Urea induces the heat shock response in human neuroblastoma cells. Journal of the American Society of Nephrology, 7, 275–282.

    PubMed  CAS  Google Scholar 

  • Mambula, S. S., Stevenson, M. A., Ogawa, K., & Calderwood, S. K. (2007). Mechanisms for Hsp70 secretion: Crossing membranes without a leader. Methods, 43(3), 168–175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manucha, W., Carrizo, L., Ruete, C., Molina, H., & Vallés, P. (2005). Angiotensin II type I antagonist on oxidative stress and heat shock protein 70 (HSP 70) expression in obstructive nephropathy. Cellular and Molecular Biology (Noisy-le-Grand, France), 51(6), 547–555.

    CAS  Google Scholar 

  • Manucha, W., Kurbán, F., Mazzei, L., et al. (2011). eNOS/Hsp70 interaction on rosuvastatin cytoprotective effect in neonatal obstructive nephropathy. European Journal of Pharmacology, 650(2–3), 487–495.

    Article  PubMed  CAS  Google Scholar 

  • Manucha, W. (2014). HSP70 family in the renal inflammatory response. Inflammation & Allergy Drug Targets, 13(4), 235–240.

    Article  PubMed  CAS  Google Scholar 

  • Mao, H., Li, Z., Zhou, Y., et al. (2008). HSP72 attenuates renal tubular cell apoptosis and intertistitial fibrosis in obstructive nephropathy. Journal of the American Society of Nephrology, 295, 202–214.

    Google Scholar 

  • Marcovecchio, M. L., & Chiarelli, F. (2009). Diabetic nephropathy. In D. E. Avner, E. V. Harmon, P. Niaudet, & N. Yoshikawa (Eds.), Pediatric nephrology (pp. 1199–1217). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Margel, D., Pevsner-Fischer, M., Baniel, J., Yossepowitch, O., & Cohen, I. R. (2011). Stress proteins and cytokines are urinary biomarkers for diagnosis and staging of bladder cancer. European Urology, 59(1), 113–119.

    Article  CAS  PubMed  Google Scholar 

  • Marzec, L., Zdrojewski, Z., Liberek, T., et al. (2009). Expression of Hsp72 protein in chronic kidney disease patients. Scandinavian Journal of Urology and Nephrology, 43, 400–408.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, M. P. (2013). Hsp70 chaperone dynamics and molecular mechanism. Trends in Biochemical Sciences, 38(10), 507–514.

    Article  CAS  PubMed  Google Scholar 

  • Mazzei, L., & Manucha, W. (2017). Growing evidence suggests WT1 effects in the kidney development are modulated by Hsp70/NO interaction. Journal of Nephrology, 30, 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Menke, A. L., & Schedl, A. (2003). WT1 and glomerular function. Seminars in Cell & Developmental Biology, 14(4), 233–240.

    Article  CAS  Google Scholar 

  • Molinas, S. M., Rosso, M., & Wayllace, N. Z. (2010). Heat shock protein 70 induction and its urinary excretion in a model of acetaminophen nephrotoxicity. Pediatric Nephrology, 25(7), 1245–1253.

    Article  PubMed  Google Scholar 

  • Molitoris, B. A. (1991). New insights into the cell biology of ischemic acute renal failure. Journal of the American Society of Nephrology, 1(12), 1263–1270.

    PubMed  CAS  Google Scholar 

  • Molitoris, B. A., Dahl, R., & Hosford, M. (1996). Cellular ATP depletion induces disruption of the spectrin cytoskeletal network. The American Journal of Physiology, 271, 790–798.

    Google Scholar 

  • Morales-Buenrostro, L. E., Salas-Nolasco, O. I., Barrera-Chimal, J., et al. (2014). Hsp72 is a novel biomarker to predict acute kidney injury in critically ill patients. PLoS One, 9(10), e109407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mueller, T., Bidmon, B., Pichler, P., et al. (2003). Urinary heat shock protein-72 excretion in clinical and experimental renal ischemia. Pediatric Nephrology, 18(2), 97–99.

    PubMed  Google Scholar 

  • Musiał, K., Szprynger, K., Szczepańska, M., & Zwolińska, D. (2009). Heat shock proteins in children and young adults on chronic hemodialysis. Pediatric Nephrology, 24(10), 2029–2034.

    Article  PubMed  Google Scholar 

  • Musial, K., Szprynger, K., Szczepanska, M., & Zwolinska, D. (2010). The heat shock protein profile in children with chronic kidney disease. Peritoneal Dialysis International, 30, 227–232.

    Article  PubMed  CAS  Google Scholar 

  • Musial, K., & Zwolinska, D. (2011). Heat shock proteins in chronic kidney disease. Pediatric Nephrology, 26(7), 1031–1037.

    Article  PubMed  Google Scholar 

  • Neuhofer, W., Lugmayr, K., Fraek, M. L., & Beck, F. X. (2001). Regulated overexpression of heat shock protein 72 protects Madin-Darby canine kidney cells from the detrimental effects of high urea concentration. Journal of the American Society of Nephrology, 12, 2565–2571.

    PubMed  CAS  Google Scholar 

  • Neuhofer, W., Holzapfel, K., Fraek, M. L., Ouyang, N., Lutz, J., & Beck, F. X. (2004). Chronic COX-2 inhibition reduces medullary HSP70 expression and induces papillary apoptosis in dehydrated rats. Kidney International, 65(2), 431–441.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill, S., Harrison, E. M., Ross, J. A., Wigmore, S. J., & Hughes, J. (2014). Heat-shock proteins and acute ischaemic kidney injury. Nephron. Experimental Nephrology, 126(4), 167–174.

    Article  PubMed  CAS  Google Scholar 

  • Ortega-Trejo, J. A., Pérez-Villalva, R., Barrera-Chimal, J., et al. (2015). Heat shock protein 72 (Hsp72) specific induction and temporal stability in urine samples as a reliable biomarker of acute kidney injury (AKI). Biomarkers, 20(6–7), 453–459.

    Article  PubMed  CAS  Google Scholar 

  • Qi, W., Chen, X., Gilbert, R. E., et al. (2007). High glucose-induced thioredoxin-interacting protein in renal proximal tubule cells is independent of transforming growth factor-beta1. The American Journal of Pathology, 171(3), 744–754.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramirez-Sandoval, J. C., Barrera-Chimal, J., Simancas, P. E., Correa-Rotter, R., Bobadilla, N. A., & Morales-Buenrostro, L. E. (2014). Tubular urinary biomarkers do not identify aetiology of acute kidney injury in kidney transplant recipients. Nephrology (Carlton), 19(6), 352–358.

    Article  CAS  Google Scholar 

  • Ravagnan, L., Gurbuxani, S., Susin, S. A., et al. (2001). Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nature Cell Biology, 3(9), 839–843.

    Article  CAS  PubMed  Google Scholar 

  • Reuter, S., Bangen, P., Edemir, B., et al. (2009). The HSP72 stress response of monocytes from patients on haemodialysis is impaired. Nephrology, Dialysis, Transplantation, 24, 2838–2846.

    Article  PubMed  CAS  Google Scholar 

  • Riordan, M., Sreedharan, R., Wang, S., et al. (2005). HSP70 binding modulates detachment of Na-K-ATPase following energy deprivation in renal epithelial cells. American Journal of Physiology. Renal Physiology, 288, 1236–1242.

    Article  CAS  Google Scholar 

  • Roberts, K. B., & Subcommittee on Urinary Tract Infection, Steering Committee on Quality Improvement and Management. (2011). Urinary tract infection: Clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics, 128(3), 595–610.

    Article  PubMed  Google Scholar 

  • Schmitt, E., Gehrmann, M., Brunet, M., Multhoff, G., & Garrido, C. (2007). Intracellular and extracellular functions of heat shock proteins: Repercussions in cancer therapy. Journal of Leukocyte Biology, 81(1), 15–27.

    Article  PubMed  CAS  Google Scholar 

  • Shioshita, K., Miyazaki, M., Ozono, Y., et al. (2000). Expression of heat shock proteins 47 and 70 in the peritoneum of patients on continuousambulatory peritoneal dialysis. Kidney International, 57(2), 619–631.

    Article  PubMed  CAS  Google Scholar 

  • Sreedharan, R., & Van Why, S. K. (2016). Heat shock proteins in the kidney. Pediatric Nephrology, 31(10), 1561–1570.

    Article  PubMed  Google Scholar 

  • Stankiewicz, A. R., Lachapelle, G., Foo, C. P., Radicioni, S. M., & Mosser, D. D. (2005). Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. The Journal of Biological Chemistry, 280(46), 38729–38739.

    Article  CAS  PubMed  Google Scholar 

  • Tang, D., Kang, R., Cao, L., et al. (2008). A pilot study to detect high mobility group box 1 and heat shock protein 72 in cerebrospinal fluid of pediatric patients with meningitis. Critical Care Medicine, 36(1), 291–295.

    Article  PubMed  CAS  Google Scholar 

  • Vaara, S. T., Lakkisto, P., Immonen, K., Tikkanen, I., Ala-Kokko, T., Pettilä, V., & FINNAKI Study Group. (2016). Urinary biomarkers indicative of apoptosis and acute kidney injury in the critically Ill. PLoS One, 11(2), e0149956.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vallés, P., Jorro, F., Carrizo, L., Manucha, W., Oliva, J., Cuello-Carrión, F. D., & Ciocca, D. R. (2003). Heat shock proteins HSP27 and HSP70 in unilateral obstructed kidneys. Pediatric Nephrology, 18(6), 527–535.

    PubMed  Google Scholar 

  • Van Why, S. K., Mann, A. S., Thulin, G., Zhu, X. H., Kashgarian, M., & Siegel, N. J. (1994). Activation of heat-shock transcription factor by graded reductions in renal ATP, in vivo, in the rat. The Journal of Clinical Investigation, 94(4), 1518–1523.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Why, S. K., Kim, S., Geibel, J., Seebach, F. A., Kashgarian, M., & Siegel, N. J. (1999). Thresholds for cellular disruption and activation of the stress response in renal epithelia. The American Journal of Physiology, 277(2), 227–234.

    Google Scholar 

  • Varano Della Vergiliana, J. F., Lansley, S. M., Porcel, J. M., et al. (2013). Bacterial infection elicits heat shock protein 72 release from pleural mesothelial cells. PLoS One, 8(5), e63873.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Liu, L., Mei, Q., Liu, L., Ran, Y., & Zhang, R. (2006). Increased expression of heat shock protein 72 protects renal proximal tubular cells from gentamicin-induced injury. Journal of Korean Medical Science, 21(5), 904–910.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Jin, H., Li, C., Hou, Y., Mei, Q., & Fan, D. (2009). Heat shock protein 72 protects kidney proximal tubule cells from injury induced by triptolide by means of activation of the MEK/ERK pathway. International Journal of Toxicology, 28(3), 177–189.

    Article  PubMed  Google Scholar 

  • Williams, G. J., Macaskill, P., Chan, S. F., Turner, R. M., Hodson, E., & Craig, J. C. (2010). Absolute and relative accuracy of rapid urine tests for urinary tract infection in children: A meta-analysis. The Lancet Infectious Diseases, 10(4), 240–250.

    Article  PubMed  Google Scholar 

  • Yadav, A. K., Kumar, V., & Jha, V. (2013). Heat shock proteins 60 and 70 specific proinflammatory and cytotoxic response of CD4+CD28null cells in chronic kidney disease. Mediators of Inflammation, 2013, 384807.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yilmaz, A., Gedikbasi, A., Yuruk Yildirim, Z., et al. (2016a). Higher urine heat shock protein 70/creatinine ratio in type 1 diabetes mellitus. Renal Failure, 38(3), 404–410.

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz, A., Yildirim, Z. Y., Emre, S., et al. (2016b). Urine heat shock protein 70 levels as a marker of urinary tract infection in children. Pediatric Nephrology, 31(9), 1469–1476.

    Article  PubMed  Google Scholar 

  • Zhou, Y., Mao, H., Li, S., et al. (2010). HSP72 inhibits Smad3 activation and nuclear translocation in renal epithelial-to-mesenchymal transition. Journal of the American Society of Nephrology, 21(4), 598–609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, Y., Cao, S., Li, H., et al. (2016). Heat shock protein 72 antagonizes STAT3 signaling to inhibit fibroblast accumulation in renal fibrogenesis. The American Journal of Pathology, 186(4), 816–882.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

None

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yilmaz, A., Yildirim, Z.N.Y. (2018). Clinical Implication of Heat Shock Protein 70 in Kidney Disease. In: Asea, A., Kaur, P. (eds) HSP70 in Human Diseases and Disorders. Heat Shock Proteins, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-89551-2_12

Download citation

Publish with us

Policies and ethics