Skip to main content

Biological Fixation: The Role of Screw Surface Design

  • Chapter
  • First Online:
Orthopedic Biomaterials

Abstract

Screws are a type of “simple machine”. They have the ability to transform rotational torque into a linear force along the long axis of the screw body. When properly designed they can be easily placed yet resist large loads, proving useful for the fixation of bone fractures or as a stable base for dental prosthetics. However, bone is a living tissue that, if damaged, is resorbed and remodelled, which potentially diminishes the initial stability of the implant. Thus, the long-term placement of an implant in bone requires the re-establishment of homeostasis in the peri-implant region to support the implant—the process of osseointegration. The rate at which such bony homeostasis is achieved, and how strongly the formed interface can anchor the implant, is dependent on the implant geometry, micro-topography and nano-topography. We describe herein the process of osseointegration and how it is influenced by the various scale ranges of implant topography. In addition a curve fitting approach is described which has been able to quantify the rate and strength of osseointegration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sung IH, Lee HS, Kim DE. Effect of surface topography on the frictional behavior at the micro/nano-scale. Wear. 2003;254(10):1019–31.

    Article  CAS  Google Scholar 

  2. Gachot C, Rosenkranz A, Reinert L, Ramos-Moore E, Souza N, Müser MH, Mücklich F. Dry friction between laser-patterned surfaces: role of alignment, structural wavelength and surface chemistry. Tribol Lett. 2013;49(1):193–202.

    Article  Google Scholar 

  3. Kydd WL, Daly CH. Bone-titanium implant response to mechanical stress. J Prosthet Dent. 1976;35(5):567–71.

    Article  CAS  PubMed  Google Scholar 

  4. Dalley S, Oleson JP. Sennacherib, archimedes, and the water screw: the context of invention in the ancient the context of invention in the ancient world. Source Technol Cult. 2003;44(1):1–26.

    Article  Google Scholar 

  5. Kravetz RE. Vaginal speculum. Am J Gastroenterol. 2006;101(11):2456.

    Article  PubMed  Google Scholar 

  6. Medical and Surgical Reporter. Speculum from pompeii. Am Period. 1886;55(16):509.

    Google Scholar 

  7. Rolt LTC. A short history of machine tools. Cambridge: The MIT Press; 1965.

    Google Scholar 

  8. Rybczynski W. One good turn: a natural history of the screwdriver and the screw. New York: Scribner; 2000.

    Google Scholar 

  9. Cucel L, Rigaud R. Des vis métalliques enfoncées dans les tissues des os, pour le traitement de certaines fractures. Rev Med Chir Paris. 1850;8:113–4.

    Google Scholar 

  10. Hansmann C. Eine neue methode der fixirung der fragmente bei complicirten fracturen. Verhandlungen der Dtsch Gesellschaft fur Chir. 1886;15:134–7.

    Google Scholar 

  11. Gotman I. Characteristics of metals used in implants. J Endourol. 1997;11(6):383–9.

    Article  CAS  PubMed  Google Scholar 

  12. Sherman WO. Vanadium steel bone plates and screws. Surg Gynocol Obstet. 1912;12:629–34.

    Google Scholar 

  13. Key JA. Stainless steel and vitallium in internal fixation of bone: a comparison. Arch Surg. 1941;43(4):615–26.

    Article  Google Scholar 

  14. Fisher AA, Shapiro A. Allergic eczematous contact dermatitis due to metallic nickel. J Am Med Assciation. 1956;161(8):717–21.

    Article  CAS  Google Scholar 

  15. Roberts TT, Prummer CM, Papaliodis DN, Uhl RL, Wagner TA. History of the orthopedic screw. Orthopedics. 2013;36(1):12–4.

    Article  PubMed  Google Scholar 

  16. Venable CH, Struck WG. Electrolysis controlling factor in the use of metals in treating fractures. J Am Med Assoc. 1938;15:1349–52.

    Article  Google Scholar 

  17. Bothe R, Beaton L, Davenport H. Reaction of bone to multiple metallic implants. Surg Gynocol Obstet. 1940;71:598–602.

    Google Scholar 

  18. Beder OE, Stevenson JK, Jones TW. A further investigation of the surgical application of titanium metal in dogs. Surgery. 1957;41(6):1012–5.

    PubMed  CAS  Google Scholar 

  19. Manam NS, Harun WSW, Shri DNA, Ghani SAC, Kurniawan T, Ismail MH, Ibrahim I. Study of corrosion in biocompatible metals for implants: a review. J Alloys Compd. 2017;701:698–715.

    Article  CAS  Google Scholar 

  20. Mavrogenis AF, Papagelopoulos PJ, Babis GC. Osseointegration of Cobalt-chrome alloy implants. J Long-Term Eff Med Implants. 2011;21(4):349–58.

    Article  CAS  PubMed  Google Scholar 

  21. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants - a review. Prog Mater Sci. 2009;54(3):397–425.

    Article  CAS  Google Scholar 

  22. Simpkins JE, Mioduszewski P, Stratton LW. Studies of chromium gettering. J Nucl Mater. 1982;111:827–30.

    Article  Google Scholar 

  23. Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol. 2008;21(1):28–44.

    Article  PubMed  Google Scholar 

  24. Costa M, Zhuang Z, Huang X, Cosentino S, Klein CB, Salnikow K. Molecular mechanisms of nickel carcinogenesis. Sci Total Environ. 1994;148:191–9.

    Article  CAS  PubMed  Google Scholar 

  25. Pearce AI, Pearce SG, Schwieger K, Milz S, Schneider E, Archer CW, Richards RG. Effect of surface topography on removal of cortical bone screws in a novel sheep model. J Orthop Res. 2008;26(10):1377–83.

    Article  PubMed  Google Scholar 

  26. Hallab NJ, Jacobs JJ. Orthopedic implant fretting corrosion. Corros Rev. 2003;21(2–3):183–213.

    CAS  Google Scholar 

  27. Callen BW, Lowenberg BF, Lugowski S, Sodhi RNS, Davies JE. Nitric acid passivation of Ti6Al4V reduces thickness of surface oxide layer and increases trace element release. J Biomed Mater Res. 1995;29(3):279–90.

    Article  CAS  PubMed  Google Scholar 

  28. Masmoudi M, Capek D, Abdelhedi R, El Halouani F, Wery M. Application of surface response analysis to the optimisation of nitric passivation of cp titanium and Ti6Al4V. Surf Coatings Technol. 2006;200(24):6651–8.

    Article  CAS  Google Scholar 

  29. Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH. Timing of loading and effect of micromotion on bone – dental implant interface : review of experimental literature. J Biomed Res. 1998;43(2):192–203.

    Article  CAS  Google Scholar 

  30. Oryan A, Alidadi S, Moshiri A. Platelet-rich plasma for bone healing and regeneration. Expert Opin. Biol Ther. 2016;16(2):213-32.

    Google Scholar 

  31. Fiedler J, Etzel N, Brenner RE. To go or not to go: migration of human mesenchymal progenitor cells stimulated by isoforms of PDGF. J Cell Biochem. 2004;93(5):990–8.

    Article  CAS  PubMed  Google Scholar 

  32. Fiedler J, Röderer G, Günther KP, Brenner RE. BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem. 2002;87(3):305–12.

    Article  CAS  PubMed  Google Scholar 

  33. Lind M. Growth factors: possible new clinical tools. A review. Acta Orthop Scand. 1996;67(4):407–17.

    Article  CAS  PubMed  Google Scholar 

  34. Green D. Coagulation cascade. Hemodial Int. 2006;10:S2–4.

    Article  PubMed  Google Scholar 

  35. Oprea WE, Karp JM, Hosseini MM, Davies JE. Effect of platelet releasate on bone cell migration and recruitment in vitro. J Craniofac Surg. 2003;14(3):292–300.

    Article  PubMed  Google Scholar 

  36. Anil S, Anand PS, Alghamdi H, Jansen JA. Dental implant surface enhancement and osseointegration. In: Turkyilmaz I. Implant dentistry - a rapidly evolving practice; 2011. p. 83–108.

    Google Scholar 

  37. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ. 2003;67(8):932–49.

    PubMed  Google Scholar 

  38. Davies JE. Bone bonding at natural and biomaterial surfaces. Biomaterials. 2007;28(34):5058–67.

    Article  CAS  PubMed  Google Scholar 

  39. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont. 1998;11(5):391–401.

    PubMed  CAS  Google Scholar 

  40. Baht GS, Hunter GK, Goldberg HA. Bone sialoprotein-collagen interaction promotes hydroxyapatite nucleation. Matrix Biol. 2008;27(7):600–8.

    Article  CAS  PubMed  Google Scholar 

  41. Martin TJ. Bone remodelling : its local regulation and the emergence of bone fragility. Best Pract Res Clin Endocrinol Metab. 2008;22(5):701–22.

    Article  PubMed  Google Scholar 

  42. Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L, Li C, Xie L, Crane J, Wan M, Zhen G, Bian Q, Yu B, Chang W, Qiu T, Pickarski M, Duong LT, Windle JJ, Luo X, Liao E, Cao X. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med. 2014;20(11):1270–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, Feng X, Van Hul W, Wan M, Cao X. TGF-β1–induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15(7):757–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Burr DB, Schaffler MB, Frederickson RG. Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J Biomech. 1988;21(11):939–45.

    Article  CAS  PubMed  Google Scholar 

  45. Roberts WE. Bone tissue interface. J Dent Educ. 1988;52(12):804–9.

    PubMed  CAS  Google Scholar 

  46. Saghiri MA, Asatourian A, Garcia-Godoy F, Sheibani N. The role of angiogenesis in implant dentistry part I: review of titanium alloys, surface characteristics and treatments. Med Oral Patol Oral Cir Bucal. 2016;21(4):e514–25.

    PubMed  PubMed Central  Google Scholar 

  47. Sibonga JD, Evans HJ, Sung HG, Spector ER, Lang TF, Oganov VS, Bakulin AV, Shackelford LC, LeBlanc AD. Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function. Bone. 2007;41(6):973–8.

    Article  CAS  PubMed  Google Scholar 

  48. McClanahan TR, Graham NAJ, Calnan JM, MacNeil MA. Toward pristine biomass: reef fish recovery in coral reef marine protected areas in Kenya. Ecol Appl. 2007;17(4):1055–67.

    Article  PubMed  Google Scholar 

  49. Savin WM, Davidson DM, Haskell WL. Autonomic contribution to heart rate recovery from exercise in humans. J Appl Physiol. 1982;53(6):1572–5.

    Article  CAS  PubMed  Google Scholar 

  50. Liddell R, Ajami E, Davies JE. Tau (τ): a new parameter to assess the osseointegration potential of an implant surface. Int J Oral Maxillofac Implants. 2017;32(1):102–12.

    Article  PubMed  Google Scholar 

  51. Mendonça G, Mendonça DBS, Simões LGP, Araújo AL, Leite ER, Duarte WR, Aragão FJL, Cooper LF. The effects of implant surface nanoscale features on osteoblast-specific gene expression. Biomaterials. 2009;30(25):4053–62.

    Article  CAS  PubMed  Google Scholar 

  52. Vincent K, Durrant MC. A structural and functional model for human bone sialoprotein. J Mol Graph Model. 2013;39:108–17.

    Article  CAS  PubMed  Google Scholar 

  53. Davies JE, Mendes VC, Ko JCH, Ajami E. Topographic scale-range synergy at the functional bone/implant interface. Biomaterials. 2014;35(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  54. Coelho PG, Zavanelli RA, Salles MB, Yeniyol S, Tovar N, Jimbo R. Enhanced bone bonding to nanotextured implant surfaces at a short healing period : a biomechanical tensile testing. Implant Dent. 2016;25(3):322–7.

    Article  PubMed  Google Scholar 

  55. Yamada M, Ueno T, Minamikawa H, Ikeda T, Nakagawa K, Ogawa T. Early-stage osseointegration capability of a submicrofeatured titanium surface created by microroughening and anodic oxidation. Clin Oral Implants Res. 2013;24(9):991–1001.

    PubMed  Google Scholar 

  56. Davies JE, Ajami E, Moineddin R, Mendes VC. The roles of different scale ranges of surface implant topography on the stability of the bone/implant interface. Biomaterials. 2013;34(14):3535–46.

    Article  CAS  PubMed  Google Scholar 

  57. Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S. Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A. 2010;92(3):1218–24.

    PubMed  Google Scholar 

  58. Huang Q, Yang Y, Zheng D, Song R, Zhang Y, Jiang P, Vogler EA, Lin C. Effect of construction of TiO2 nanotubes on platelet behaviors: structure-property relationships. Acta Biomater. 2017;51:505–12.

    Article  CAS  PubMed  Google Scholar 

  59. Park JY, Gemmell CH, Davies JE. Platelet interactions with titanium: modulation of platelet activity by surface topography. Biomaterials. 2001;22(19):2671–82.

    Article  CAS  PubMed  Google Scholar 

  60. Kikuchi L, Park JY, Victor C, Davies JE. Platelet interactions with calcium-phosphate-coated surfaces. Biomaterials. 2005;26(26):5285–95.

    Article  CAS  PubMed  Google Scholar 

  61. Refai AK, Textor M, Brunette DM, Waterfield JD. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J Biomed Mater Res A. 2004;70:194–205.

    Article  CAS  PubMed  Google Scholar 

  62. Kalajzic Z, Li H, Wang LP, Jiang X, Lamothe K, Adams DJ, Aguila HL, Rowe DW, Kalajzic I. Use of an alpha-smooth muscle actin GFP reporter to identify an osteoprogenitor population. Bone. 2008;43(3):501–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brett PM, Harle J, Salih V, Mihoc R, Olsen I, Jones FH, Tonetti M. Roughness response genes in osteoblasts. Bone. 2004;35(1):124–33.

    Article  CAS  PubMed  Google Scholar 

  64. Zhao L, Mei S, Chu PK, Zhang Y, Wu Z. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials. 2010;31(19):5072–82.

    Article  CAS  PubMed  Google Scholar 

  65. Halldin A, Jimbo R, Johansson CB, Gretzer C, Jacobsson M. Improved osseointegration and interlocking capacity with dual acid-treated implants: a rabbit study. Clin Oral Implants Res. 2016;27(1):22–30.

    Article  PubMed  Google Scholar 

  66. Shah FA, Johansson ML, Omar O, Simonsson H, Palmquist A, Thomsen P. Laser-modified surface enhances osseointegration and biomechanical anchorage of commercially pure titanium implants for bone-anchored hearing systems. PLoS One. 2016;11(6):e0157504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gotfredsen K, Berglundh T, Lindhe J. Anchorage of titanium implants with different surface characteristics: an experimental study in rabbits. Clin Implant Dent Relat Res. 2000;2(3):120–8.

    Article  CAS  PubMed  Google Scholar 

  68. Vandamme K, Naert I, Vander Sloten J, Puers R, Duyck J. Effect of implant surface roughness and loading on peri-implant bone formation. J Periodontol. 2008;79(1):150–7.

    Article  PubMed  Google Scholar 

  69. Kan JYK, Rungcharassaeng K, Kim J, Lozada JL, Goodacre CJ. Factors affecting the survival of implants placed in grafted maxillary sinuses: a clinical report. J Prosthet Dent. 2002;87(5):485–9.

    Article  PubMed  Google Scholar 

  70. Chamay A, Tschantz P. Mechanical influences in bone remodeling. Experimental research on Wolff’s law. J Biomech. 1972;5(2):173–80.

    Article  CAS  PubMed  Google Scholar 

  71. Walter A, Winsauer H, Marcé-Nogué J, Mojal S, Puigdollers A. Design characteristics, primary stability and risk of fracture of orthodontic mini-implants: pilot scan electron microscope and mechanical studies. Med Oral Patol Oral Cir Bucal. 2013;18(5):e804–10.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bianco R-J, Arnoux P-J, Wagnac E, Mac-Thiong J-M, Aubin C-E. Minimizing pedicle screw pullout risks: a detailed biomechanical analysis of screw design and placement. Clin Spine Surg. 2017;30(3):226–32.

    Article  Google Scholar 

  73. Migliorati M, Benedicenti S, Signori A, Drago S, Cirillo P, Barberis F, Silvestrini Biavati A. Thread shape factor: evaluation of three different orthodontic miniscrews stability. Eur J Orthod. 2013;35(3):401–5.

    Article  PubMed  Google Scholar 

  74. Alkaly RN, Bader DL. The effect of transpedicular screw design on its performance in vertebral bone under tensile loads: a parametric study. Clin Spine Surg. 2016;29(10):433–40.

    Article  PubMed  Google Scholar 

  75. Ma P, Liu H, Li D, Lin S, Shi Z, Peng Q. Influence of helix angle and denisty on primary stability of immediatelt loaded dental implants: three-dimensional finite element analysis. Chinese J Stomatol. 2007;42(10):618–21.

    Google Scholar 

  76. Geng JP, Ma QS, Xu W, Tan KBC, Liu GR. Finite element analysis of four thread-form configurations in a stepped screw implant. J Oral Rehabil. 2004;31(3):233–9.

    Article  CAS  PubMed  Google Scholar 

  77. Chun H-J, Cheong S-Y, Han J-H, Heo S-J, Chung J-P, Rhyu I-C, Choi Y-C, Baik H-K, Ku Y, Kim M-H. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil. 2002;29(1998):565–74.

    Article  PubMed  Google Scholar 

  78. Hall J, Miranda-Burgos P, Sennerby L. Stimulation of directed bone growth at oxidized titanium implants by macroscopic grooves: an in vivo study. Clin Implant Dent Relat Res. 2005;7(Suppl 1):S76–82.

    Article  PubMed  Google Scholar 

  79. Scarano A, Degidi M, Perrotti V, Degidi D, Piattelli A, Iezzi G. Experimental evaluation in rabbits of the effects of thread concavities in bone formation with different titanium implant surfaces. Clin Implant Dent Relat Res. 2014;16(4):572–81.

    Article  PubMed  Google Scholar 

  80. Moreo P, García-Aznar JM, Doblaré M. Bone ingrowth on the surface of endosseous implants. Part 2: theoretical and numerical analysis. J Theor Biol. 2009;260(1):13–26.

    Article  PubMed  Google Scholar 

  81. Moreo P, García-Aznar JM, Doblaré M. Bone ingrowth on the surface of endosseous implants. Part 1: mathematical model. J Theor Biol. 2009;260(1):1–12.

    Article  PubMed  Google Scholar 

  82. Kim JW, Baek SH, Kim TW, Il Chang Y. Comparison of stability between cylindrical and conical type mini-implants. Angle Orthod. 2008;78(4):692–8.

    Article  PubMed  Google Scholar 

  83. Geng JP, Xu W, Tan KBC, Liu GR. Finite element analysis of an osseointegrated stepped screw dental implant. J Oral Implantol. 2004;30(4):223–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liddell, R.S., Davies, J.E. (2018). Biological Fixation: The Role of Screw Surface Design. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials . Springer, Cham. https://doi.org/10.1007/978-3-319-89542-0_15

Download citation

Publish with us

Policies and ethics