Skip to main content

Twisting Growth in Plant Roots

  • Chapter
  • First Online:
Plant Biomechanics

Abstract

One of the fundamental problems in plant morphogenesis is the molecular and cellular basis of left-right asymmetry that often leads to various chiral structures such as the coils of tendrils and twisted leaves. The twisting mutants of the Arabidopsis roots and hypocotyl exhibit a helical pattern of epidermal cell files with a handedness that is opposite to that of the underlying cortical microtubule arrays in the epidermis. These mutants offer the unique opportunity to investigate the genetic basis of twisting in plants, particularly in the context of cortical microtubules. In this chapter, we address the importance of large-scale mechanical forces to understand the mechanism of this hierarchical helical order, with a particular emphasis on the role of tissue tension combined with the stresses generated by differential growth. Physical processes such as elasticity and geometry might be important factors to coordinate the chirality across different length scales and to organize an entire plant body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham Y, Tamburu C, Klein E, Dunlop JWC, Fratzl P, Raviv U, Elbaum R (2011) Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork’s bill awn. J R Soc Interf 9:640–647

    Article  Google Scholar 

  • Aharoni H, Abraham Y, Elbaum R, Sharon E, Kupferman R (2012) Emergence of spontaneous twist and curvature in non-euclidean rods: Application to erodium plant cells. Phys Rev Lett 108(238):106

    Google Scholar 

  • Armon S, Efrati E, Kupferman R, Sharon E (2011) Geometry and mechanics in the opening of chiral seed pods. Science 333:1726–1730

    Article  CAS  PubMed  Google Scholar 

  • Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222

    Article  CAS  PubMed  Google Scholar 

  • Baskin TI, Jensen OE (2013) On the role of stress anisotropy in the growth of stems. J Exp Bot 64:4697–4707

    Article  CAS  PubMed  Google Scholar 

  • Boudaoud A (2010) An introduction to the mechanics of morphogenesis for plant biologists. Trends Plant Sci 15:353–360

    Article  CAS  PubMed  Google Scholar 

  • Burgert I, Keplinger T (2013) Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis. Exp Bot 64:4635–4649

    Article  CAS  Google Scholar 

  • Buschmann H, Hauptmann M, Niessing D, Lloyd CW, Schäffner AR (2009) Helical growth of the arabidopsis mutant tortifolia2 does not depend on cell division patterns but involves handed twisting of isolated cells. Plant Cell 21:2090–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumais J (2012) Can mechanics control pattern formation in plants? Curr Opin Plant Biol 10:58–62

    Article  Google Scholar 

  • Dumais J (2013) Modes of deformation of walled cells. J Exp Bot 64:4681–4695

    Article  CAS  PubMed  Google Scholar 

  • Dumais J, Forterre Y (2012) “Vegetable Dynamicks”: the role of water in plant movements. Annu Rev Fluid Mech 44:453–478

    Article  Google Scholar 

  • Elbaum R, Zaltzman L, Burgert I, Fratzl P (2007) The role of wheat awns in the seed dispersal unit. Science 316:884–886

    Article  CAS  PubMed  Google Scholar 

  • Furutani I, Watanabe Y, Prieto R, Masukawa M, Suzuki K, Naoi K, Thitamadee S, Shikanai T, Hashimoto T (2000) The spiral genes are required for directional control of cell elongation in arabidopsis thaliana. Development 127:4443–4453

    PubMed  CAS  Google Scholar 

  • Geitmann A, Ortega JKE (2009) Mechanics and modeling of plant cell growth. Trends Plant Sci 14:467–478

    Article  CAS  PubMed  Google Scholar 

  • Gerbode SJ, Puzey JR, McCormick AG, Mahadevan L (2012) How the cucumber tendril coils and overwinds. Science 337:1087–1091

    Article  CAS  PubMed  Google Scholar 

  • Goriely A, Tabor M (1998) Spontaneous helix hand reversal and tendril perversion in climbing plants. Phys Rev Lett 80:1564

    Article  CAS  Google Scholar 

  • Goriely A, Tabor M (2011) Spontaneous rotational inversion in phycomyces. Phys Rev Lett 106(138):103

    Google Scholar 

  • Goriely A, Robertson-Tessi M, Tabor M, Vandiver R (2008) Elastic growth models. In: Mondaini RP, Pardalos PM (eds) Mathematical modeling of biosystems. Springer, Berlin, Heidelberg, pp 1–44

    Google Scholar 

  • Green PB (1994) Connecting gene and hormone action to form, pattern and organogenesis. J Exp Bot 45:1775–1788

    Google Scholar 

  • Hamant O, Heisler MG, Joensson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in arabidopsis. Science 322:1650–1655

    Article  CAS  Google Scholar 

  • Hannezo E, Prost J, Joanny JF (2012) Mechanical instability of biological tubes. Phys Rev Lett 109(018):101

    Google Scholar 

  • Hashimoto T (2002) Molecular genetic analysis of left-right handedness in plants. Phil Trans R Soc Lond B 357:799–808

    Article  CAS  Google Scholar 

  • Hawkins RJ, Tindemans SH, Mulder BM (2010) Model for the orientational ordering of the plant microtubule cortical array. Phys Rev E 82(011):911

    Google Scholar 

  • Henley CL (2012) Possible origins of macroscopic left-right asymmetry in organisms. J Stat Phys 148:741–775

    Article  Google Scholar 

  • Himmelspach R, Williamson RE, Wasteneys GO (2013) Cellulose microbril alignment recovers from dcb-induced disruption despite microtubule disorganization. Plant J 36:565–575

    Article  CAS  Google Scholar 

  • Ishida T, Kaneko Y, Iwano M, Hashimoto T (2007a) Helical microtubule arrays in a collection of twisting tubulin mutants of arabidopsis thaliana. Proc Natl Acad Sci USA 104:8544–8549

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Thitamadee S, Hashimoto T (2007b) Twisted growth and organization of cortical microtubules. J Plant Res 120:61–70

    Article  CAS  PubMed  Google Scholar 

  • Kamiya N, Tazawa M, Takada T (1963) The relation of tugor pressure to cell volume in nitella with special reference to mechanical properties of the cell wall. Protoplasma 57:501–521

    Article  CAS  Google Scholar 

  • Landrein B, Bringmann M, Lathe R, Vouillot C, Ivakov A, Boudaoud A, Persson S, Hamant O (2013) Impaired cellulose synthase guidance leads to stem torsion and twists phyllotactic patterns in arabidopsis. Curr Biol 23:895–900

    Article  CAS  PubMed  Google Scholar 

  • Levin M (2005) Left-right asymmetry in embryonic development: a comprehensive review. Mech Dev 122:3–25

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Mahadevan L (2011) Growth, geometry, and mechanics of a blooming lily. Proc Natl Acad Sci USA 108:5516–5521

    Article  PubMed  Google Scholar 

  • Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theor Biol 8:264–275

    Article  CAS  PubMed  Google Scholar 

  • Marder M, Sharon E, Smith S, Roman B (2003) Theory of edges of leaves. Europhys Lett 62:498–504

    Article  CAS  Google Scholar 

  • Mirabet V, Das P, Boudaoud A, Hamant O (2011) The role of mechanical forces in plant morphogenesis. Ann Rev Plant Biol 62:365–385

    Article  CAS  Google Scholar 

  • Moulia B (2013) Plant biomechanics and mechanobiology are convergent paths to flourishing interdisciplinary research. J Exp Bot 64:4617–4633

    Article  CAS  PubMed  Google Scholar 

  • Muratov A, Baulin VA (2015) Mechanism of dynamic reorientation of cortical microtubules due to mechanical stress. Biohys Chem 207:82–89

    Article  CAS  Google Scholar 

  • Ortega J (1985) Augmented growth equation for cell wall expansion. Plant Physiol 79:318–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    Article  CAS  PubMed  Google Scholar 

  • Peaucelle A, Wightman R, Hoefte H (2015) The control of growth symmetry breaking in the arabidopsis hypocotyl. Curr Biol 25:1746–1752

    Article  CAS  PubMed  Google Scholar 

  • Peters WS, Thomos AD (1996) The history of tissue tension. Ann Bot 77:657–665

    Article  CAS  PubMed  Google Scholar 

  • Probine MC (1963) Cell growth and the structure and mechanical properties of the wall in internodal cells of nitella opaca-iii. spiral growth and cell wall structure. J Exp Bot 14:101–113

    Article  Google Scholar 

  • Richter G, Monshausen GB, Krol A, Gilroy S (2009) Mechanical stimuli modulate lateral root organogenesis. Plant Physiol 151:1855–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson S, Burian A, Couturier E, Landrein B, Louveaux M, Neumann ED, Peaucelle A, Weber A, Nakayama N (2013) Mechanical control of morphogenesis at the shoot apex. Exp Bot 64:4729–4744

    Article  CAS  Google Scholar 

  • Roelofsen PA (1966) Ultrastructure of the wall in growing cells and its relation to the direction of the growth. Adv Bot Res 2:69–149

    Article  Google Scholar 

  • Savin T, Kurpios NA, Shyer AE, Florescu P, Liang H, Mahadevan L, Tabin CJ (2011) On the growth and form of the gut. Nature 476:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93:1415–1425

    Article  PubMed  Google Scholar 

  • Schulgasser K, Witztum A (2004) Spiralling upward. J Theor Biol 230:275–280

    Article  PubMed  Google Scholar 

  • Sellen DB (1983) The response of mechanically anisotropic cylinderical cells to multiaxial stress. J Exp Bot 34:681–687

    Article  Google Scholar 

  • Sharon E, Efrati E (2010) The mechanics of non-euclidean plates. Soft Matter 6:5693–5704

    Article  CAS  Google Scholar 

  • Shraiman BI (2005) Mechanical feedback as a possible regulator of tissue growth. Proc Natl Acad Sci USA 102:3318–3323

    Article  CAS  PubMed  Google Scholar 

  • Silk WK (1989) Growth rate patterns which maintain a helical tissue tube. J Theor Biol 138:311–327

    Article  Google Scholar 

  • Smyth DR (2016) Helical growth in plant organs: mechanisms and significance. Development 143:3272–3282

    Article  CAS  PubMed  Google Scholar 

  • Thitamadee S, Tuchihara K, Hashimoto T (2002) Microtubule basis for left-handed helical growth in arabidopsis. Nature (London) 417:193–196

    Article  CAS  PubMed  Google Scholar 

  • Thompson DW (1992) On growth and form: the complete, Revised edn. Dover, New York

    Book  Google Scholar 

  • Wada H (2012) Hierarchical helical order in the twisted growth of plant organs. Phys Rev Lett 109(128):104

    Google Scholar 

  • Wolgemuth CW, Goldstein RE, Powers TR (2004) Dynamic supercoiling bifurcations of growing elastic filaments. Phys D 190:266–289

    Article  Google Scholar 

  • Yin J, Cao Z, Li C, Sheinman I, Chen X (2008) Stress-driven buckling patterns in spheroidal core/shell structures. Proc Natl Acad Sci USA 105:19,132–19,135

    Article  Google Scholar 

  • Zhao ZL, Zhao HP, Li BW, Nie BD, Feng XQ, Gao H (2015) Biomechanical tactics of chiral growth in emergent aquatic macrophytes. Sci Rep 5(12):610

    Google Scholar 

Download references

Acknowledgements

We are grateful to Takashi Hashimoto for sharing the images shown in Figs. 1 and 2 and for valuable discussions. We also thank Tobias Baskin for suggesting relevant literature on twisted cell growth (Probine 1963; Sellen 1983).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Wada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wada, H., Matsumoto, D. (2018). Twisting Growth in Plant Roots. In: Geitmann, A., Gril, J. (eds) Plant Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-79099-2_6

Download citation

Publish with us

Policies and ethics