Skip to main content

Role of the NOTCH Signaling Pathway in Head and Neck Cancer

  • Chapter
  • First Online:

Part of the book series: Current Cancer Research ((CUCR))

Abstract

The NOTCH signaling cascade has been implicated in multiple cellular functions, such as cell proliferation, differentiation, and survival. Dysregulation of the NOTCH pathway is associated with the progression of several types of malignant tumors, including head and neck squamous cell carcinoma (HNSCC). Accumulating data suggest that NOTCH is one of the most frequently altered pathways in HNSCC. Given the importance of NOTCH signaling in regulating tumor cell behavior, several NOTCH-targeted strategies are currently being developed and tested in preclinical and clinical settings. However, the precise role of the NOTCH pathway in head and neck malignancies remains incompletely defined and controversial. In most tumor types, NOTCH1 has been reported as an oncogene. However, early characterization of the genomic landscape found that inactivating mutations of NOTCH1 frequently occur in HNSCC, suggesting that NOTCH1 is a tumor suppressor. More recent evidence indicates that NOTCH signaling may be activated in a subset of HNSCC tumors, similar to other tumor types, indicating a more complex function in HNSCC. This overview will summarize the evidence for oncogenic and tumor suppressor roles of the NOTCH signaling pathway in HNSCC, discuss recent studies that aid in interpretation of these contradictory findings, and describe potential therapeutic opportunities and future directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Torre LA, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  3. Califano J, et al. Unknown primary head and neck squamous cell carcinoma: molecular identification of the site of origin. J Natl Cancer Inst. 1999;91(7):599–604.

    Article  PubMed  CAS  Google Scholar 

  4. Cianchetti M, et al. Diagnostic evaluation of squamous cell carcinoma metastatic to cervical lymph nodes from an unknown head and neck primary site. Laryngoscope. 2009;119(12):2348–54.

    Article  PubMed  Google Scholar 

  5. Nagao T, et al. Oral cancer screening as an integral part of general health screening in Tokoname City, Japan. J Med Screen. 2000;7(4):203–8.

    Article  PubMed  CAS  Google Scholar 

  6. Subramanian S, et al. Cost-effectiveness of oral cancer screening: results from a cluster randomized controlled trial in India. Bull World Health Organ. 2009;87(3):200–6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Agrawal N, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333(6046):1154–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Pickering CR, et al. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov. 2013;3(7):770–81.

    Article  PubMed  CAS  Google Scholar 

  9. Stransky N, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82.

    Article  CAS  Google Scholar 

  11. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284(5415):770–6.

    Article  PubMed  CAS  Google Scholar 

  12. Hori K, Sen A, Artavanis-Tsakonas S. Notch signaling at a glance. J Cell Sci. 2013;126(Pt 10):2135–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ellisen LW, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66(4):649–61.

    Article  PubMed  CAS  Google Scholar 

  14. Ntziachristos P, et al. From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell. 2014;25(3):318–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sun W, et al. Activation of the NOTCH pathway in head and neck cancer. Cancer Res. 2014;74(4):1091–104.

    Article  PubMed  CAS  Google Scholar 

  16. Liu YF, et al. Somatic mutations and genetic variants of NOTCH1 in head and neck squamous cell carcinoma occurrence and development. Sci Rep. 2016;6:24014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Capaccione KM, Pine SR. The Notch signaling pathway as a mediator of tumor survival. Carcinogenesis. 2013;34(7):1420–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wang Z, et al. Emerging role of Notch in stem cells and cancer. Cancer Lett. 2009;279(1):8–12.

    Article  PubMed  CAS  Google Scholar 

  19. Zeng Q, et al. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell. 2005;8(1):13–23.

    Article  PubMed  CAS  Google Scholar 

  20. Gu F, et al. Expression of Stat3 and Notch1 is associated with cisplatin resistance in head and neck squamous cell carcinoma. Oncol Rep. 2010;23(3):671–6.

    PubMed  CAS  Google Scholar 

  21. Ferrando AA. The role of NOTCH1 signaling in T-ALL. Hematology Am Soc Hematol Educ Program. 2009;2009:353–61.

    Google Scholar 

  22. Song X, et al. Common and complex Notch1 mutations in Chinese oral squamous cell carcinoma. Clin Cancer Res. 2014;20:701–10.

    Article  PubMed  CAS  Google Scholar 

  23. Izumchenko E, et al. Notch1 mutations are drivers of oral tumorigenesis. Cancer Prev Res (Phila). 2015;8(4):277–86.

    Article  CAS  Google Scholar 

  24. Egloff AM, Grandis JR. Molecular pathways: context-dependent approaches to Notch targeting as cancer therapy. Clin Cancer Res. 2012;18(19):5188–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Louvi A, Artavanis-Tsakonas S. Notch and disease: a growing field. Semin Cell Dev Biol. 2012;23(4):473–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hijioka H, et al. Upregulation of Notch pathway molecules in oral squamous cell carcinoma. Int J Oncol. 2010;36(4):817–22.

    PubMed  CAS  Google Scholar 

  27. Zhang TH, et al. Activation of Notch signaling in human tongue carcinoma. J Oral Pathol Med. 2011;40(1):37–45.

    Article  PubMed  CAS  Google Scholar 

  28. Rettig EM, et al. Cleaved NOTCH1 expression pattern in head and neck squamous cell carcinoma is associated with NOTCH1 mutation, HPV status, and high-risk features. Cancer Prev Res (Phila). 2015;8(4):287–95.

    Article  CAS  Google Scholar 

  29. Chiorean EG, et al. A phase I first-in-human study of Enoticumab (REGN421), a fully Human Delta-like ligand 4 (Dll4) monoclonal antibody in patients with advanced solid tumors. Clin Cancer Res. 2015;21(12):2695–703.

    Google Scholar 

  30. Smith DC, et al. A phase I dose escalation and expansion study of the anticancer stem cell agent demcizumab (anti-DLL4) in patients with previously treated solid tumors. Clin Cancer Res. 2014;20(24):6295–303.

    Article  PubMed  CAS  Google Scholar 

  31. Takebe N, Nguyen D, Yang SX. Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther. 2014;141(2):140–9.

    Article  PubMed  CAS  Google Scholar 

  32. Lee SM, et al. Phase 2 study of RO4929097, a gamma-secretase inhibitor, in metastatic melanoma: SWOG 0933. Cancer. 2015;121(3):432–40.

    Article  PubMed  CAS  Google Scholar 

  33. Diaz-Padilla I, et al. A phase Ib combination study of RO4929097, a gamma-secretase inhibitor, and temsirolimus in patients with advanced solid tumors. Investig New Drugs. 2013;31(5):1182–91.

    Article  CAS  Google Scholar 

  34. Locatelli MA, et al. Phase I study of the gamma secretase inhibitor PF-03084014 in combination with docetaxel in patients with advanced triple-negative breast cancer. Oncotarget. 2017;8(2):2320–8.

    Article  PubMed  Google Scholar 

  35. Papayannidis C, et al. A phase 1 study of the novel gamma-secretase inhibitor PF-03084014 in patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Blood Cancer J. 2015;5:e350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Messersmith WA, et al. A phase I, dose-finding study in patients with advanced solid malignancies of the oral gamma-secretase inhibitor PF-03084014. Clin Cancer Res. 2015;21(1):60–7.

    Article  PubMed  CAS  Google Scholar 

  37. Andersson ER, Lendahl U. Therapeutic modulation of Notch signalling – are we there yet? Nat Rev Drug Discov. 2014;13(5):357–78.

    Article  PubMed  CAS  Google Scholar 

  38. Diaz-Padilla I, et al. A phase II study of single-agent RO4929097, a gamma-secretase inhibitor of Notch signaling, in patients with recurrent platinum-resistant epithelial ovarian cancer: a study of the Princess Margaret, Chicago and California phase II consortia. Gynecol Oncol. 2015;137(2):216–22.

    Article  PubMed  CAS  Google Scholar 

  39. Piha-Paul SA, et al. Results of a phase 1 trial combining ridaforolimus and MK-0752 in patients with advanced solid tumours. Eur J Cancer. 2015;51(14):1865–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Yuan X, et al. Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett. 2015;369(1):20–7.

    Article  PubMed  CAS  Google Scholar 

  41. Shimizu K, et al. Functional diversity among Notch1, Notch2, and Notch3 receptors. Biochem Biophys Res Commun. 2002;291(4):775–9.

    Article  PubMed  CAS  Google Scholar 

  42. Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137(2):216–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Chillakuri CR, et al. Notch receptor-ligand binding and activation: insights from molecular studies. Semin Cell Dev Biol. 2012;23(4):421–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pei Z, Baker NE. Competition between Delta and the Abruptex domain of Notch. BMC Dev Biol. 2008;8:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. de Celis JF, Bray SJ. The Abruptex domain of Notch regulates negative interactions between Notch, its ligands and fringe. Development. 2000;127(6):1291–302.

    PubMed  Google Scholar 

  46. Malecki MJ, et al. Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol Cell Biol. 2006;26(12):4642–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Choi SH, et al. Conformational locking upon cooperative assembly of notch transcription complexes. Structure. 2012;20(2):340–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Arnett KL, et al. Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes. Nat Struct Mol Biol. 2010;17(11):1312–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sulis ML, et al. NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL. Blood. 2008;112(3):733–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Weng AP, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71.

    Article  PubMed  CAS  Google Scholar 

  51. Baldus CD, et al. Prognostic implications of NOTCH1 and FBXW7 mutations in adult acute T-lymphoblastic leukemia. Haematologica. 2009;94(10):1383–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Fiuza UM, Arias AM. Cell and molecular biology of Notch. J Endocrinol. 2007;194(3):459–74.

    Article  PubMed  CAS  Google Scholar 

  53. Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7(9):678–89.

    Article  PubMed  CAS  Google Scholar 

  54. Chesworth BM, et al. Reliability and validity of two versions of the upper extremity functional index. Physiother Can. 2014;66(3):243–53.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang M, et al. Does Notch play a tumor suppressor role across diverse squamous cell carcinomas? Cancer Med. 2016;5(8):2048–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Yap LF, et al. The opposing roles of NOTCH signalling in head and neck cancer: a mini review. Oral Dis. 2015;21(7):850–7.

    Article  PubMed  CAS  Google Scholar 

  57. Nowell CS, Radtke F. Notch as a tumour suppressor. Nat Rev Cancer. 2017;17(3):145–59.

    Article  PubMed  CAS  Google Scholar 

  58. Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer. 2011;11(5):338–51.

    Article  PubMed  CAS  Google Scholar 

  59. Joo YH, et al. Relationship between vascular endothelial growth factor and Notch1 expression and lymphatic metastasis in tongue cancer. Otolaryngol Head Neck Surg. 2009;140(4):512–8.

    Article  PubMed  Google Scholar 

  60. Wang W-M, et al. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma. PLoS One. 2015;10(2):e0119723.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Troy JD, et al. Expression of EGFR, VEGF, and NOTCH1 suggest differences in tumor angiogenesis in HPV-positive and HPV-negative head and neck squamous cell carcinoma. Head Neck Pathol. 2013;7(4):344–55.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Leethanakul C, et al. Distinct pattern of expression of differentiation and growth-related genes in squamous cell carcinomas of the head and neck revealed by the use of laser capture microdissection and cDNA arrays. Oncogene. 2000;19(March):3220–4.

    Article  PubMed  CAS  Google Scholar 

  63. Ha PK, et al. A transcriptional progression model for head and neck cancer. Clin Cancer Res. 2003;9(8):3058–64.

    PubMed  CAS  Google Scholar 

  64. Zhang ZP, et al. Correlation of Notch1 expression and activation to cisplatin-sensitivity of head and neck squamous cell carcinoma. Ai Zheng. 2009;28(2):100–3.

    PubMed  CAS  Google Scholar 

  65. Yoshida R, et al. The pathological significance of Notch1 in oral squamous cell carcinoma. Lab Investig. 2013;93(10):1068–81.

    Article  PubMed  CAS  Google Scholar 

  66. Snijders AM, et al. Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene. 2005;24(26):4232–42.

    Article  PubMed  CAS  Google Scholar 

  67. Li D, et al. Notch1 overexpression associates with poor prognosis in human laryngeal squamous cell carcinoma. Ann Otol Rhinol Laryngol. 2014;123(10):705–10.

    Article  PubMed  Google Scholar 

  68. Lin JT, et al. Association of high levels of Jagged-1 and Notch-1 expression with poor prognosis in head and neck cancer. Ann Surg Oncol. 2010;17(11):2976–83.

    Article  PubMed  Google Scholar 

  69. Inamura N, et al. Notch1 regulates invasion and metastasis of head and neck squamous cell carcinoma by inducing EMT through c-Myc. Auris Nasus Larynx. 2016;44(4):447–57.

    Article  PubMed  Google Scholar 

  70. Dai MY, et al. Downregulation of Notch1 induces apoptosis and inhibits cell proliferation and metastasis in laryngeal squamous cell carcinoma. Oncol Rep. 2015;34(6):3111–9.

    Article  PubMed  CAS  Google Scholar 

  71. Weaver AN, et al. Notch Signaling activation is associated with patient mortality and increased FGF1-mediated invasion in squamous cell carcinoma of the oral cavity. Mol Cancer Res. 2016;14(9):883–91.

    Article  PubMed  CAS  Google Scholar 

  72. Zhao ZL, et al. NOTCH1 inhibition enhances the efficacy of conventional chemotherapeutic agents by targeting head neck cancer stem cell. Sci Rep. 2016;6:24704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Gaykalova DA, et al. Integrative computational analysis of transcriptional and epigenetic alterations implicates DTX1 as a putative tumor suppressor gene in HNSCC. Oncotarget. 2017;8(9):15349–63.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Stylianou S, Clarke RB, Brennan K. Aberrant activation of notch signaling in human breast cancer. Cancer Res. 2006;66(3):1517–25.

    Article  PubMed  CAS  Google Scholar 

  75. Xie XQ, et al. Dysregulation of mRNA profile in cisplatin-resistant gastric cancer cell line SGC7901. World J Gastroenterol. 2017;23(7):1189–202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zhang Z, Filho MS, Nor JE. The biology of head and neck cancer stem cells. Oral Oncol. 2012;48(1):1–9.

    Article  PubMed  Google Scholar 

  77. Lee SH, et al. Notch1 signaling contributes to stemness in head and neck squamous cell carcinoma. Lab Invest. 2016;96(5):508–16.

    Article  PubMed  CAS  Google Scholar 

  78. Lee SH, et al. Epigallocatechin-3-gallate attenuates head and neck cancer stem cell traits through suppression of Notch pathway. Eur J Cancer. 2013;49(15):3210–8.

    Article  PubMed  CAS  Google Scholar 

  79. Upadhyay P, et al. Notch pathway activation is essential for maintenance of stem-like cells in early tongue cancer. Oncotarget. 2016;7(31):50437–49.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yu X, et al. Notch signaling activation in human embryonic stem cells is required for embryonic, but not trophoblastic, lineage commitment. Cell Stem Cell. 2008;2(5):461–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Shi G, Jin Y. Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res Ther. 2010;1(5):39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Neville BW, Day TA. Oral cancer and precancerous lesions. CA Cancer J Clin. 2002;52(4):195–215.

    Article  PubMed  Google Scholar 

  83. Haya-Fernandez MC, et al. The prevalence of oral leukoplakia in 138 patients with oral squamous cell carcinoma. Oral Dis. 2004;10(6):346–8.

    Article  PubMed  Google Scholar 

  84. Mehanna HM, et al. Treatment and follow-up of oral dysplasia – a systematic review and meta-analysis. Head Neck. 2009;31(12):1600–9.

    Article  PubMed  Google Scholar 

  85. Silverman S Jr, Gorsky M, Lozada F. Oral leukoplakia and malignant transformation. A follow-up study of 257 patients. Cancer. 1984;53(3):563–8.

    Article  PubMed  Google Scholar 

  86. Lee SH, et al. TNFalpha enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem Biophys Res Commun. 2012;424(1):58–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Gokulan R, Halagowder D. Expression pattern of Notch intracellular domain (NICD) and Hes-1 in preneoplastic and neoplastic human oral squamous epithelium: their correlation with c-Myc, clinicopathological factors and prognosis in oral cancer. Med Oncol. 2014;31(8):126.

    Article  PubMed  CAS  Google Scholar 

  88. Rettig EM, et al. Whole-genome sequencing of salivary gland adenoid cystic carcinoma. Cancer Prev Res (Phila). 2016;9(4):265–74.

    CAS  Google Scholar 

  89. Ferrarotto R, et al. Activating NOTCH1 mutations define a distinct subgroup of patients with adenoid cystic carcinoma who have poor prognosis, propensity to bone and liver metastasis, and potential responsiveness to Notch1 inhibitors. J Clin Oncol. 2017;35(3):352–60.

    Article  PubMed  CAS  Google Scholar 

  90. Yao J, et al. Gamma-secretase inhibitors exerts antitumor activity via down-regulation of Notch and nuclear factor kappa B in human tongue carcinoma cells. Oral Dis. 2007;13(6):555–63.

    Article  PubMed  CAS  Google Scholar 

  91. Wu CX, et al. Notch inhibitor PF-03084014 inhibits hepatocellular carcinoma growth and metastasis via suppression of cancer stemness due to reduced activation of Notch1-Stat3. Mol Cancer Ther. 2017;16(8):1531–43.

    Article  PubMed  CAS  Google Scholar 

  92. Gavai AV, et al. Discovery of clinical candidate BMS-906024: a potent pan-notch inhibitor for the treatment of leukemia and solid tumors. ACS Med Chem Lett. 2015;6(5):523–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Mohamed AA, et al. Synergistic activity with NOTCH inhibition and androgen ablation in ERG-positive prostate cancer cells. Mol Cancer Res. 2017;15(10):1308–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Barat S, et al. Gamma-Secretase inhibitor IX (GSI) impairs concomitant activation of Notch and wnt-beta-catenin pathways in CD44+ gastric Cancer stem cells. Stem Cells Transl Med. 2017;6(3):819–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. De Kloe GE, De Strooper B. Small molecules that inhibit Notch signaling. Methods Mol Biol. 2014;1187:311–22.

    Article  PubMed  CAS  Google Scholar 

  96. Pant S, et al. A first-in-human phase I study of the oral Notch inhibitor, LY900009, in patients with advanced cancer. Eur J Cancer. 2016;56:1–9.

    Article  PubMed  CAS  Google Scholar 

  97. Bossi P, Alfieri S. Investigational drugs for head and neck cancer. Expert Opin Investig Drugs. 2016;25(7):797–810.

    Article  PubMed  CAS  Google Scholar 

  98. Kramer A, et al. Small molecules intercept Notch signaling and the early secretory pathway. Nat Chem Biol. 2013;9(11):731–8.

    Article  PubMed  CAS  Google Scholar 

  99. Borgegard T, et al. First and second generation gamma-secretase modulators (GSMs) modulate amyloid-beta (Abeta) peptide production through different mechanisms. J Biol Chem. 2012;287(15):11810–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Kumar R, Juillerat-Jeanneret L, Golshayan D. Notch antagonists: potential modulators of Cancer and inflammatory diseases. J Med Chem. 2016;59(17):7719–37.

    Article  PubMed  CAS  Google Scholar 

  101. Nicolas M, et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003;33(3):416–21.

    Article  PubMed  CAS  Google Scholar 

  102. Naganuma S, et al. Notch receptor inhibition reveals the importance of cyclin D1 and Wnt signaling in invasive esophageal squamous cell carcinoma. Am J Cancer Res. 2012;2(4):459–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Nguyen BC, et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 2006;20(8):1028–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Rangarajan A, et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 2001;20(13):3427–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Ohashi S, et al. NOTCH1 and NOTCH3 coordinate esophageal squamous differentiation through a CSL-dependent transcriptional network. Gastroenterology. 2010;139(6):2113–23.

    Article  PubMed  CAS  Google Scholar 

  106. Duan L, et al. Growth suppression induced by Notch1 activation involves Wnt-beta-catenin down-regulation in human tongue carcinoma cells. Biol Cell. 2006;98(8):479–90.

    Article  PubMed  CAS  Google Scholar 

  107. Jiao J, et al. Potential role of Notch1 signaling pathway in laryngeal squamous cell carcinoma cell line Hep-2 involving proliferation inhibition, cell cycle arrest, cell apoptosis, and cell migration. Oncol Rep. 2009;22(4):815–23.

    PubMed  CAS  Google Scholar 

  108. Sakamoto K, et al. Reduction of NOTCH1 expression pertains to maturation abnormalities of keratinocytes in squamous neoplasms. Lab Investig. 2012;92(5):688–702.

    Article  PubMed  CAS  Google Scholar 

  109. Gaykalova DA, et al. Novel insight into mutational landscape of head and neck squamous cell carcinoma. PLoS One. 2014;9(3):e93102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Coric V, et al. Safety and tolerability of the gamma-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch Neurol. 2012;69(11):1430–40.

    Article  PubMed  Google Scholar 

  111. Doody RS, et al. Peripheral and central effects of gamma-secretase inhibition by semagacestat in Alzheimer's disease. Alzheimers Res Ther. 2015;7(1):36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer. 2003;3(10):756–67.

    Article  PubMed  CAS  Google Scholar 

  113. Olsauskas-Kuprys R, Zlobin A, Osipo C. Gamma secretase inhibitors of Notch signaling. Onco Targets Ther. 2013;6:943–55.

    PubMed  PubMed Central  CAS  Google Scholar 

  114. Li K, et al. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J Biol Chem. 2008;283(12):8046–54.

    Article  PubMed  CAS  Google Scholar 

  115. Aoyama K, et al. Frequent mutations in NOTCH1 ligand-binding regions in Japanese oral squamous cell carcinoma. Biochem Biophys Res Commun. 2014;452(4):980–5.

    Article  PubMed  CAS  Google Scholar 

  116. Seiwert TY, et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res. 2015;21(3):632–41.

    Article  PubMed  CAS  Google Scholar 

  117. Zhong R, et al. Notch1 activation or loss promotes HPV-induced oral tumorigenesis. Cancer Res. 2015;75(18):3958–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Weijzen S, et al. HPV16 E6 and E7 oncoproteins regulate Notch-1 expression and cooperate to induce transformation. J Cell Physiol. 2003;194(3):356–62.

    Article  PubMed  CAS  Google Scholar 

  119. Talora C, et al. Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev. 2002;16(17):2252–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Sausville EA, Burger AM. Contributions of human tumor xenografts to anticancer drug development. Cancer Res. 2006;66(7):3351–4, discussion 3354.

    Article  PubMed  CAS  Google Scholar 

  121. Izumchenko E, et al. Patient-derived xenografts as tools in pharmaceutical development. Clin Pharmacol Ther. 2016;99(6):612–21.

    Article  PubMed  CAS  Google Scholar 

  122. Kagohara L, et al. Epigenetic regulation of gene expression in cancer: techniques, resources, and analysis. Brief Funct Genomics. 2018;17(1):49–63.

    Google Scholar 

  123. Ozerov IV, et al. In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development. Nat Commun. 2016;7:13427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Mroz EA, Rocco JW. MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma. Oral Oncol. 2013;49(3):211–5.

    Article  PubMed  CAS  Google Scholar 

  125. Afsari B, Geman D, Fertig EJ. Learning dysregulated pathways in cancers from differential variability analysis. Cancer Inform. 2014;13(Suppl 5):61–7.

    PubMed  PubMed Central  Google Scholar 

  126. Makarev E, et al. In silico analysis of pathways activation landscape in oral squamous cell carcinoma and oral leukoplakia. Cell Death Discov. 2017;3:17022.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ogmundsdottir HM, Bjornsson J, Holbrook WP. Role of TP53 in the progression of pre-malignant and malignant oral mucosal lesions. A follow-up study of 144 patients. J Oral Pathol Med. 2009;38(7):565–71.

    Article  PubMed  CAS  Google Scholar 

  128. Hori K, et al. Synergy between the ESCRT-III complex and Deltex defines a ligand-independent Notch signal. J Cell Biol. 2011;195(6):1005–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Li JL, et al. DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo. Cancer Res. 2011;71(18):6073–83.

    Article  PubMed  CAS  Google Scholar 

  130. Doroquez DB, Rebay I. Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit Rev Biochem Mol Biol. 2006;41(6):339–85.

    Article  PubMed  CAS  Google Scholar 

  131. Hayward P, et al. Notch modulates Wnt signalling by associating with Armadillo/beta-catenin and regulating its transcriptional activity. Development. 2005;132(8):1819–30.

    Article  PubMed  CAS  Google Scholar 

  132. Shin M, Nagai H, Sheng G. Notch mediates Wnt and BMP signals in the early separation of smooth muscle progenitors and blood/endothelial common progenitors. Development. 2009;136(4):595–603.

    Article  PubMed  CAS  Google Scholar 

  133. Blokzijl A, et al. Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol. 2003;163(4):723–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Izumchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schubert, A.D. et al. (2018). Role of the NOTCH Signaling Pathway in Head and Neck Cancer. In: Burtness, B., Golemis, E. (eds) Molecular Determinants of Head and Neck Cancer. Current Cancer Research. Humana Press, Cham. https://doi.org/10.1007/978-3-319-78762-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78762-6_8

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-78761-9

  • Online ISBN: 978-3-319-78762-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics