Skip to main content

Controlling Chemical Chaos in the Belousov-Zhabotinsky Oscillator

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 830))

Included in the following conference series:

  • 525 Accesses

Abstract

Chaos is ubiquitous in Nature and represents one of the most fascinating expressions of real world complexity. Depending on the specific context, the onset of chaotic behaviours can be undesirable, thus, controlling the mechanisms at the basis of chaotic dynamics represents a cutting-edge challenge in many areas, including cardiology, information processing, hydrodynamics and optics, to name a few. In this work we review our recent results showing how, in chemical reactions, the active interplay between a nonlinear kinetics and hydrodynamic instabilities can be exploited as a general mechanism to induce and control chemical chaos. To this end, we consider as a model system the Belousov-Zhabotinsky (BZ) reaction. Thanks to a chemo-hydrodynamic coupling, the reaction can undergo chaotic oscillations when carried out in batch conditions. Chaos appears and disappears by following Ruelle-Takens-Newhouse scenario both in the cerium- and ferroin-catalyzed BZ systems. Here, we present experimental evidence that the transition to chemical chaos can be directly controlled by tuning either kinetic or hydrodynamic parameters of the system. Experiments were simulated by using a reaction-diffusion-convection (RDC) model where the nonlinear reaction kinetics are coupled to the Navier-Stokes equations. Numerical solutions of the RDC model clearly indicate that natural convection can feedback on the spatio-temporal evolution of the concentration fields and, in turn, changes bulk oscillation patterns. Distinct bifurcations in the oscillation patterns are found when the Grashof numbers (governing the entity of convective flows into the system) and the diffusion coefficients of the chemical species are varied. The consumption of the initial reagents is also found to be a critical phenomenon able to modulate the strength of the RDC coupling and drive order-disorder transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abarbanel, H.D.I.: Analysis of Observed Chaotic Data. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-0763-4

    Book  MATH  Google Scholar 

  2. Hayashi, K., Gotoda, H., Gentili, P.L.: Probing and exploiting the chaotic dynamics of a hydrodynamic photochemical oscillator to implement all the basic binary logic functions. Chaos Interdisc. J. Nonlinear Sci. 26(5), 053102 (2016)

    Article  Google Scholar 

  3. Gentili, P.L., Giubila, M.S., Heron, B.M.: Processing binary and fuzzy logic by chaotic time series generated by a hydrodynamic photochemical oscillator. ChemPhysChem 18(13), 1831–1841 (2017)

    Article  Google Scholar 

  4. Boccaletti, S., Grebogi, C., Lai, Y.C., Mancini, H., Maza, D.: The control of chaos: theory and applications. Phys. Rep. 329(3), 103–197 (2000)

    Article  MathSciNet  Google Scholar 

  5. Scott, S.K.: Chemical Chaos. Oxford University Press, Oxford (1993)

    Google Scholar 

  6. Belousov, B.P.: A periodic reaction and its mechanism. In: Sbornik Referatov po Radiatsonno Meditsine, Moscow, Medgiz, pp. 145–147 (1958)

    Google Scholar 

  7. Zhabotinsky, A.M.: Periodic liquid phase reactions. Proc. Acad. Sci. USSR 157, 392–395 (1964)

    Google Scholar 

  8. Noyes, R.M., Field, R., Koros, E.: Oscillations in chemical systems. I. Detailed mechanism in a system showing temporal oscillations. J. Am. Chem. Soc. 94(4), 1394–1395 (1972)

    Article  Google Scholar 

  9. Rustici, M., Branca, M., Caravati, C., Marchettini, N.: Evidence of a chaotic transient in a closed unstirred cerium catalyzed Belousov-Zhabotinsky system. Chem. Phys. Lett. 263(3), 429–434 (1996)

    Article  Google Scholar 

  10. Rossi, F., Budroni, M.A., Marchettini, N., Cutietta, L., Rustici, M., Turco Liveri, M.L.: Chaotic dynamics in an unstirred ferroin catalyzed Belousov-Zhabotinsky reaction. Chem. Phys. Lett. 480(4–6), 322–326 (2009)

    Article  Google Scholar 

  11. Newhouse, S., Ruelle, D., Takens, F.: Occurrence of strange Axiom \(A\) attractors near quasi periodic flows on T\(^m\), m\(\ge \)3. Commun. Math. Phys. 64(1), 35–40 (1978)

    Article  MATH  Google Scholar 

  12. De Wit, A., Eckert, K., Kalliadasis, S.: Introduction to the focus issue: chemo-hydrodynamic patterns and instabilities. Chaos Interdisc. J. Nonlinear Sci. 22(3), 037101 (2012)

    Article  Google Scholar 

  13. Rossi, F., Turco Liveri, M.L.: Chemical self-organization in self-assembling biomimetic systems. Ecol. Model. 220(16), 1857–1864 (2009)

    Article  Google Scholar 

  14. Rossi, F., Budroni, M.A., Marchettini, N., Carballido-Landeira, J.: Segmented waves in a reaction-diffusion-convection system. Chaos Interdisc. J. Nonlinear Sci. 22(3), 037109–037109-11 (2012)

    Article  MathSciNet  Google Scholar 

  15. Budroni, M.A., De Wit, A.: Dissipative structures: From reaction-diffusion to chemo-hydrodynamic patterns. Chaos Interdisc. J. Nonlinear Sci. 27(10), 104617 (2017)

    Article  Google Scholar 

  16. Marchettini, N., Rustici, M.: Effect of medium viscosity in a closed unstirred Belousov-Zhabotinsky system. Chem. Phys. Lett. 317(6), 647–651 (2000)

    Article  Google Scholar 

  17. Horvath, D., Budroni, M.A., Baba, P., Rongy, L., De Wit, A., Eckert, K., Hauser, M.J.B., Toth, A.: Convective dynamics of traveling autocatalytic fronts in a modulated gravity field. Phys. Chem. Chem. Phys. 16, 26279–26287 (2014)

    Article  Google Scholar 

  18. Turco Liveri, M.L., Lombardo, R., Masia, M., Calvaruso, G., Rustici, M.: Role of the reactor geometry in the onset of transient chaos in an unstirred Belousov-Zhabotinsky system. J. Phys. Chem. A 107(24), 4834–4837 (2003)

    Article  Google Scholar 

  19. Budroni, M.A., Rossi, F.: A novel mechanism for in situ nucleation of spirals controlled by the interplay between phase fronts and reaction-diffusion waves in an oscillatory medium. J. Phys. Chem. C 119(17), 9411–9417 (2015)

    Article  Google Scholar 

  20. Budroni, M.A., Calabrese, I., Miele, Y., Rustici, M., Marchettini, N., Rossi, F.: Control of chemical chaos through medium viscosity in a batch ferroin-catalysed Belosuov-Zhabotinsky reaction. Phys. Chem. Chem. Phys. 19, 32235–32241 (2017)

    Article  Google Scholar 

  21. Rossi, F., Varsalona, R., Turco Liveri, M.L.: New features in the dynamics of a ferroin-catalyzed Belousov-Zhabotinsky reaction induced by a zwitterionic surfactant. Chem. Phys. Lett. 463(4–6), 378–382 (2008)

    Article  Google Scholar 

  22. Rossi, F., Lombardo, R., Sciascia, L., Sbriziolo, C., Turco Liveri, M.L.: Spatio-temporal perturbation of the dynamics of the ferroin catalyzed Belousov-Zhabotinsky reaction in a batch reactor caused by sodium dodecyl sulfate micelles. J. Phys. Chem. B 112, 7244–7250 (2008)

    Article  Google Scholar 

  23. Strizhak, P.E., Kawczynski, A.L.: Complex transient oscillations in the Belousov-Zhabotinskii reaction in a batch reactor. J. Phys. Chem. 99(27), 10830–10833 (1995)

    Article  Google Scholar 

  24. Biosa, G., Masia, M., Marchettini, N., Rustici, M.: A ternary nonequilibrium phase diagram for a closed unstirred Belousov-Zhabotinsky system. Chem. Phys. 308(1), 7–12 (2005)

    Article  Google Scholar 

  25. Rossi, F., Pulselli, F., Tiezzi, E., Bastianoni, S., Rustici, M.: Effects of the electrolytes in a closed unstirred Belousov-Zhabotinsky medium. Chem. Phys. 313, 101–106 (2005)

    Article  Google Scholar 

  26. Budroni, M.A., Masia, M., Rustici, M., Marchettini, N., Volpert, V., Cresto, P.C.: Ruelle-Takens-Newhouse scenario in reaction-diffusion-convection system. J. Chem. Phys. 128(11), 111102–111104 (2008)

    Article  Google Scholar 

  27. Budroni, M.A., Masia, M., Rustici, M., Marchettini, N., Volpert, V.: Bifurcations in spiral tip dynamics induced by natural convection in the Belousov-Zhabotinsky reaction. J. Chem. Phys. 130(2), 024902–8 (2009)

    Article  Google Scholar 

  28. Rongy, L., Schuszter, G., Sinkó, Z., Tóth, T., Horváth, D., Tóth, A., De Wit, A.: Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally. Chaos Interdisc. J. Nonlinear Sci. 19(2), 023110 (2009)

    Article  Google Scholar 

  29. Budroni, M.A., Rongy, L., De Wit, A.: Dynamics due to combined buoyancy- and Marangoni-driven convective flows around autocatalytic fronts. Phys. Chem. Chem. Phys. 14, 14619–14629 (2012)

    Article  Google Scholar 

  30. Jahnke, W., Skaggs, W.E., Winfree, A.T.: Chemical vortex dynamics in the Belousov-Zhabotinskii reaction and in the two-variable oregonator model. J. Phys. Chem. 93(2), 740–749 (1989)

    Article  Google Scholar 

  31. Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: the TISEAN package. Chaos: Interdisc. J. Nonlinear Sci. 9, 413 (1999)

    Article  MATH  Google Scholar 

  33. Marchettini, N., Budroni, M.A., Rossi, F., Masia, M., Turco Liveri, M.L., Rustici, M.: Role of the reagents consumption in the chaotic dynamics of the Belousov-Zhabotinsky oscillator in closed unstirred reactors. Phys. Chem. Chem. Phys. 12(36), 11062–11069 (2010)

    Article  Google Scholar 

  34. Agladze, K.I., Krinsky, V.I., Pertsov, A.M.: Chaos in the non-stirred Belousov-Zhabotinsky reaction is induced by interaction of waves and stationary dissipative structures. Nature 308(5962), 834–835 (1984)

    Article  Google Scholar 

Download references

Acknowledgments

FR gratefully acknowledges the University of Salerno for the grants ORSA158121 and ORSA167988. MAB and MR acknowledge financial support from Fondazione Banco di Sardegna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello A. Budroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Budroni, M.A., Rustici, M., Marchettini, N., Rossi, F. (2018). Controlling Chemical Chaos in the Belousov-Zhabotinsky Oscillator. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2017. Communications in Computer and Information Science, vol 830. Springer, Cham. https://doi.org/10.1007/978-3-319-78658-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78658-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78657-5

  • Online ISBN: 978-3-319-78658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics