Skip to main content

Mobile Innate Immune Cells

  • Chapter
  • First Online:
Damage-Associated Molecular Patterns in Human Diseases

Abstract

This chapter describes the broad variety of mobile cells of the innate immune system. The cells include phagocytic cells such as monocytes/macrophages, polymorphonuclear neutrophils, and dendritic cells; cells that release inflammatory mediators such as eosinophils, basophils, and mast cells; and innate lymphoid cells such as natural killer cells as well as unconventional “non-classical” T cells with partial innate function such as natural killer T cells, mucosal-associated invariant T cells, and gammadelta T cells. These mobile innate immune cells represent the core of the immune defense system on the level of those professional cells which operate at the initial phase of infective and sterile tissue injury. Many of these cells are grouped into several subsets. Typically, these cells execute different defense functions such as phagocytic capabilities of phagocytes and killing properties of natural killer cells and unconventional T cells, all properties aimed at getting rid of inciting insults and restoring homeostasis. Another striking feature of these mobile innate immune cells is their role in preparing a robust adaptive immune response upon the presence of nonself or altered-self antigens. In this regard, one can even notice some overlapping functions between innate and adaptive immune cells. Finally, the mobile cells are also involved in the integration of the sessile cells of the innate immune system to combat injury commonly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kay AB. Paul Ehrlich and the early history of granulocytes. Microbiol Spectr. 2016;4 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27726791.

  2. Zhang L, Wang C-C. Inflammatory response of macrophages in infection. Hepatobiliary Pancreat Dis Int. 2014;13:138–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24686541.

    Article  CAS  PubMed  Google Scholar 

  3. Bloom BR, Modlin RL. Mechanisms of defense against intracellular pathogens mediated by human macrophages. Microbiol Spectr. 2016;4 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27337485.

  4. Robinson JM. Reactive oxygen species in phagocytic leukocytes. Histochem Cell Biol. 2008;130:281–97. Available from: http://link.springer.com/10.1007/s00418-008-0461-4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Segal AW. The function of the NADPH oxidase of phagocytes and its relationship to other NOXs in plants, invertebrates, and mammals. Int J Biochem Cell Biol. 2008;40:604–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18036868.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Teng T-S, Ji A-L, Ji X-Y, Li Y-Z. Neutrophils and immunity: from bactericidal action to being conquered. J Immunol Res. 2017;2017:9671604. Available from: https://www.hindawi.com/journals/jir/2017/9671604/.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Gordon S. Phagocytosis: an immunobiologic process. Immunity. 2016;44:463–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26982354.

    Article  CAS  PubMed  Google Scholar 

  8. Urb M, Sheppard DC. The role of mast cells in the defence against pathogens. Heitman J, editor. PLoS Pathog. 2012;8:e1002619. Available from: http://dx.plos.org/10.1371/journal.ppat.1002619.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38:792–804. Available from: http://linkinghub.elsevier.com/retrieve/pii/S107476131300157X.

    Article  CAS  PubMed  Google Scholar 

  10. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44:450–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26982353.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity. 2014;41:21–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25035951.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kierdorf K, Prinz M, Geissmann F, Gomez Perdiguero E. Development and function of tissue resident macrophages in mice. Semin Immunol. 2015;27:369–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27036090.

    Article  CAS  PubMed  Google Scholar 

  13. Robbins CS, Swirski FK. The multiple roles of monocyte subsets in steady state and inflammation. Cell Mol Life Sci. 2010;67:2685–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20437077.

    Article  CAS  PubMed  Google Scholar 

  14. Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol. 2013;14:986–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24048120.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gordon S. The macrophage: past, present and future. Eur J Immunol. 2007;37(Suppl 1):S9–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17972350.

    Article  CAS  PubMed  Google Scholar 

  16. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496:445–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23619691.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25035950.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16322748.

    Article  CAS  PubMed  Google Scholar 

  19. Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11:750–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22025054.

    Article  CAS  PubMed  Google Scholar 

  20. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164:6166–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10843666.

    Article  CAS  PubMed  Google Scholar 

  21. Mills CD. M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol. 2012;32:463–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23428224.

    Article  CAS  PubMed  Google Scholar 

  22. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11:723–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21997792.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Yu X, Guo C, Fisher PB, Subjeck JR, Wang X-Y. Scavenger receptors: emerging roles in cancer biology and immunology. Adv Cancer Res. 2015;128:309–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26216637.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Taylor PR, Martinez-Pomares L, Stacey M, Lin H-H, Brown GD, Gordon S. Macrophage receptors and immune recognition. Annu Rev Immunol. 2005;23:901–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15771589.

    Article  CAS  PubMed  Google Scholar 

  25. McCoy CE, O’Neill LAJ. The role of toll-like receptors in macrophages. Front Biosci. 2008;13:62–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17981528.

    Article  CAS  PubMed  Google Scholar 

  26. Elinav E, Strowig T, Henao-Mejia J, Flavell RA. Regulation of the antimicrobial response by NLR proteins. Immunity. 2011;34:665–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21616436.

    Article  CAS  PubMed  Google Scholar 

  27. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21616434.

    Article  CAS  PubMed  Google Scholar 

  28. Osorio F, Reis e Sousa C. Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity. 2011;34:651–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21616435.

    Article  CAS  PubMed  Google Scholar 

  29. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature. 2007;447:1116–20. Available from: http://www.nature.com/doifinder/10.1038/nature05894.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Glass CK, Natoli G. Molecular control of activation and priming in macrophages. Nat Immunol. 2016;17:26–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26681459.

    Article  CAS  PubMed  Google Scholar 

  31. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19105661.

    Article  CAS  PubMed  Google Scholar 

  32. Meng X-M, Tang PM-K, Li J, Lan HY. Macrophage phenotype in kidney injury and repair. Kidney Dis (Basel, Switzerland). 2015;1:138–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27536674.

    Google Scholar 

  33. Van Dyken SJ, Locksley RM. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol. 2013;31:317–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23298208.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Geering B, Stoeckle C, Conus S, Simon H-U. Living and dying for inflammation: neutrophils, eosinophils, basophils. Trends Immunol. 2013;34:398–409. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23665135.

    Article  CAS  PubMed  Google Scholar 

  35. Scapini P, Marini O, Tecchio C, Cassatella MA. Human neutrophils in the saga of cellular heterogeneity: insights and open questions. Immunol Rev. 2016;273:48–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27558327.

    Article  CAS  PubMed  Google Scholar 

  36. Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9:181–218. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24050624.

    Article  CAS  PubMed  Google Scholar 

  37. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol. 2012;30:459–89. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22224774.

    Article  CAS  PubMed  Google Scholar 

  38. Desai J, Mulay SR, Nakazawa D, Anders H-J. Matters of life and death. How neutrophils die or survive along NET release and is “NETosis” = necroptosis? Cell Mol Life Sci. 2016;73:2211–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27048811.

    Article  CAS  PubMed  Google Scholar 

  39. Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA. The neutrophil as a cellular source of chemokines. Immunol Rev. 2000;177:195–203. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11138776.

    Article  CAS  PubMed  Google Scholar 

  40. Futosi K, Fodor S, Mócsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol. 2013;17:638–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23994464.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. de Oliveira S, Rosowski EE, Huttenlocher A. Neutrophil migration in infection and wound repair: going forward in reverse. Nat Rev Immunol. 2016;16:378–91. Available from: http://www.nature.com/doifinder/10.1038/nri.2016.49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Li X, Utomo A, Cullere X, Choi MM, Milner DA, Venkatesh D, et al. The β-glucan receptor dectin-1 activates the integrin Mac-1 in neutrophils via Vav protein signaling to promote Candida albicans clearance. Cell Host Microbe. 2011;10:603–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22177564.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol. 2007;7:179–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17318230.

    Article  CAS  PubMed  Google Scholar 

  44. Kanneganti T-D, Lamkanfi M, Núñez G. Intracellular NOD-like receptors in host defense and disease. Immunity. 2007;27:549–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17967410.

    Article  CAS  PubMed  Google Scholar 

  45. Kolli D, Velayutham TS, Casola A. Host-viral interactions: role of pattern recognition receptors (PRRs) in human pneumovirus infections. Pathogens. 2013;2:2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24244872.

    Article  CAS  Google Scholar 

  46. Sundd P, Pospieszalska MK, Ley K. Neutrophil rolling at high shear: flattening, catch bond behavior, tethers and slings. Mol Immunol. 2013;55:59–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23141302.

    Article  CAS  PubMed  Google Scholar 

  47. Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol. 2012;198:773–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22945932.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Dąbrowska D, Jabłońska E, Garley M, Ratajczak-Wrona W, Iwaniuk A. New aspects of the biology of neutrophil extracellular traps. Scand J Immunol. 2016;84:317. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27667737.

    Article  PubMed  Google Scholar 

  49. Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y, Herrmann M. New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Front Immunol. 2016;7:302. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27570525.

    PubMed Central  PubMed  Google Scholar 

  50. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15001782.

    Article  CAS  PubMed  Google Scholar 

  51. Metzler KD, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 2014;8:883–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25066128.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176:231–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17210947.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Iba T, Hashiguchi N, Nagaoka I, Tabe Y, Murai M. Neutrophil cell death in response to infection and its relation to coagulation. J Intens Care. 2013;1:13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25705405.

    Article  Google Scholar 

  54. Leliefeld PHC, Wessels CM, Leenen LPH, Koenderman L, Pillay J. The role of neutrophils in immune dysfunction during severe inflammation. Crit Care. 2016;20:73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27005275.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Ehrlich P. Beitrage zur Kenntnis der granulierten Bindegewebszellen und der eosinophilen Leukocyten. Arch Anat Physiol. 1879;3:166. Available from: https://scholar.google.com/scholar_lookup?author=P+Ehrlich&title=Beiträge+zur+Kenntnis+der+granulierten+Bindegewebszellen+und+der+eosinophilen+Leukocythen.&publication_year=1879&pages=166-169.

    Google Scholar 

  56. Schadewaldt H. Paul Ehrlich und die Faszination der Farben. Chemother. J. 2004;13:41–5. Available from: http://www.paul-ehrlich.de/Links/Schadewaldt.pdf.

    Google Scholar 

  57. Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, et al. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy. 2008;38:709–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18384431.

    Article  CAS  PubMed  Google Scholar 

  58. Long H, Liao W, Wang L, Lu Q. A player and coordinator: the versatile roles of eosinophils in the immune system. Transfus Med Hemother. 2016;43:96–108. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27226792.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Shamri R, Xenakis JJ, Spencer LA. Eosinophils in innate immunity: an evolving story. Cell Tissue Res. 2011;343:57–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21042920.

    Article  PubMed  Google Scholar 

  60. Kvarnhammar AM, Cardell LO. Pattern-recognition receptors in human eosinophils. Immunology. 2012;136:11–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22242941.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Driss V, Legrand F, Hermann E, Loiseau S, Guerardel Y, Kremer L, et al. TLR2-dependent eosinophil interactions with mycobacteria: role of alpha-defensins. Blood. 2009;113:3235–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18978205.

    Article  CAS  PubMed  Google Scholar 

  62. Lotfi R, Herzog GI, DeMarco RA, Beer-Stolz D, Lee JJ, Rubartelli A, et al. Eosinophils oxidize damage-associated molecular pattern molecules derived from stressed cells. J Immunol. 2009;183:5023–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19794066.

    Article  CAS  PubMed  Google Scholar 

  63. Kobayashi T, Kouzaki H, Kita H. Human eosinophils recognize endogenous danger signal crystalline uric acid and produce proinflammatory cytokines mediated by autocrine ATP. J Immunol. 2010;184:6350–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20483787.

    Article  CAS  PubMed  Google Scholar 

  64. Acharya KR, Ackerman SJ. Eosinophil granule proteins: form and function. J Biol Chem. 2014;289:17406–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24802755.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Marone G, Borriello F, Varricchi G, Genovese A, Granata F. Basophils: historical reflections and perspectives. Chem Immunol Allergy. 2014;100:172–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24925398.

    Article  PubMed  Google Scholar 

  66. Oetjen LK, Noti M, Kim BS. New insights into basophil heterogeneity. Semin Immunopathol. 2016;38:549–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27178409.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Lundberg K, Rydnert F, Broos S, Andersson M, Greiff L, Lindstedt M. C-type lectin receptor expression on human basophils and effects of allergen-specific immunotherapy. Scand J Immunol. 2016;84:150–7. Available from: http://doi.wiley.com/10.1111/sji.12457.

    Article  CAS  PubMed  Google Scholar 

  68. Suurmond J, Stoop JN, Rivellese F, Bakker AM, Huizinga TWJ, Toes REM. Activation of human basophils by combined toll-like receptor- and FcεRI-triggering can promote Th2 skewing of naive T helper cells. Eur J Immunol. 2014;44:386–96. Available from: http://doi.wiley.com/10.1002/eji.201343617.

    Article  CAS  PubMed  Google Scholar 

  69. Schwartz C, Eberle JU, Voehringer D. Basophils in inflammation. Eur J Pharmacol. 2016;778:90–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25959388.

    Article  CAS  PubMed  Google Scholar 

  70. Marone G, Varricchi G, Loffredo S, Galdiero MR, Rivellese F, de Paulis A. Are basophils and mast cells masters in HIV infection? Int Arch Allergy Immunol. 2016;171:158–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27960171.

    Article  CAS  PubMed  Google Scholar 

  71. Miyake K, Karasuyama H. Emerging roles of basophils in allergic inflammation. Allergol Int. 2017;66:382. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28506528.

    Article  PubMed  Google Scholar 

  72. Okayama Y, Kawakami T. Development, migration, and survival of mast cells. Immunol Res. 2006;34:97–115. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16760571.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Abraham SN, St John AL. Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol. 2010;10:440–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20498670.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Singh J, Shah R, Singh D. Targeting mast cells: uncovering prolific therapeutic role in myriad diseases. Int Immunopharmacol. 2016;40:362–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27694038.

    Article  CAS  PubMed  Google Scholar 

  75. DeBruin EJ, Gold M, Lo BC, Snyder K, Cait A, Lasic N, et al. Mast cells in human health and disease. Methods Mol. Biol. 2015;1220:93–119. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25388247.

    CAS  Google Scholar 

  76. Morita H, Saito H, Matsumoto K, Nakae S. Regulatory roles of mast cells in immune responses. Semin Immunopathol. 2016;38:623–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27154294.

    Article  CAS  PubMed  Google Scholar 

  77. Arthur G, Bradding P. New developments in mast cell biology: clinical implications. Chest. 2016;150:680–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27316557.

    Article  PubMed  Google Scholar 

  78. Krystel-Whittemore M, Dileepan KN, Wood JG. Mast cell: a multi-functional master cell. Front Immunol. 2015;6:620. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26779180.

    PubMed  Google Scholar 

  79. Irani AA, Schechter NM, Craig SS, DeBlois G, Schwartz LB. Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci U S A. 1986;83:4464–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3520574.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Sandig H, Bulfone-Paus S. TLR signaling in mast cells: common and unique features. Front Immunol. 2012;3:185. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22783258.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Graham AC, Hilmer KM, Zickovich JM, Obar JJ. Inflammatory response of mast cells during influenza A virus infection is mediated by active infection and RIG-I signaling. J Immunol. 2013;190:4676–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23526820.

    Article  CAS  PubMed  Google Scholar 

  82. Bax HJ, Keeble AH, Gould HJ. Cytokinergic IgE action in mast cell activation. Front Immunol. 2012;3:229. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22888332.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Dema B, Suzuki R, Rivera J. Rethinking the role of immunoglobulin E and its high-affinity receptor: new insights into allergy and beyond. Int Arch Allergy Immunol. 2014;164:271–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25227903.

    Article  CAS  PubMed  Google Scholar 

  84. Qiao H, Andrade MV, Lisboa FA, Morgan K, Beaven MA. FcepsilonR1 and toll-like receptors mediate synergistic signals to markedly augment production of inflammatory cytokines in murine mast cells. Blood. 2006;107:610–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16174756.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Sibilano R, Frossi B, Pucillo CE. Mast cell activation: a complex interplay of positive and negative signaling pathways. Eur J Immunol. 2014;44:2558–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25066089.

    Article  CAS  PubMed  Google Scholar 

  86. Jin M, Yu B, Zhang W, Zhang W, Xiao Z, Mao Z, et al. Toll-like receptor 2-mediated MAPKs and NF-κB activation requires the GNAO1-dependent pathway in human mast cells. Integr Biol (Camb). 2016;8:968–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27515449.

    Article  CAS  Google Scholar 

  87. Williams CM, Galli SJ. The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J Allergy Clin Immunol. 2000;105:847–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10808163.

    Article  CAS  PubMed  Google Scholar 

  88. Agier J, Brzezińska-Błaszczyk E. Cathelicidins and defensins regulate mast cell antimicrobial activity. Postȩpy Hig i Med doświadczalnej. 2016;70:618–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27333932.

    Article  Google Scholar 

  89. Enoksson M, Lyberg K, Möller-Westerberg C, Fallon PG, Nilsson G, Lunderius-Andersson C. Mast cells as sensors of cell injury through IL-33 recognition. J Immunol. 2011;186:2523–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21239713.

    Article  CAS  PubMed  Google Scholar 

  90. Suurmond J, Dorjée AL, Knol EF, Huizinga TWJ, Toes REM. Differential TLR-induced cytokine production by human mast cells is amplified by FcɛRI triggering. Clin Exp Allergy. 2015;45:788–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25665021.

    Article  CAS  PubMed  Google Scholar 

  91. Theoharides TC, Alysandratos K-D, Angelidou A, Delivanis D-A, Sismanopoulos N, Zhang B, et al. Mast cells and inflammation. Biochim Biophys Acta. 2012;1822:21–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21185371.

    Article  CAS  PubMed  Google Scholar 

  92. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17486113.

    Article  CAS  PubMed  Google Scholar 

  93. Li F, Wang Y, Lin L, Wang J, Xiao H, Li J, et al. Mast cell-derived exosomes promote Th2 cell differentiation via OX40L-OX40 ligation. J Immunol Res. 2016;2016:3623898. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27066504.

    PubMed Central  PubMed  Google Scholar 

  94. Möllerherm H, von Köckritz-Blickwede M, Branitzki-Heinemann K. Antimicrobial activity of mast cells: role and relevance of extracellular DNA traps. Front Immunol. 2016;7:265. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27486458.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Metz M, Grimbaldeston MA, Nakae S, Piliponsky AM, Tsai M, Galli SJ. Mast cells in the promotion and limitation of chronic inflammation. Immunol Rev. 2007;217:304–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17498068.

    Article  CAS  PubMed  Google Scholar 

  96. Virk H, Arthur G, Bradding P. Mast cells and their activation in lung disease. Transl Res. 2016;174:60–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26845625.

    Article  CAS  PubMed  Google Scholar 

  97. Steinman RM, Cohn ZA. Pillars article: identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med.1973. 137: 1142–1162. J Immunol. 2007;178:5–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17182535.

    CAS  PubMed  Google Scholar 

  98. Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol. 2012;30:1–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22136168.

    Article  CAS  PubMed  Google Scholar 

  99. Steinman RM, Hemmi H. Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol. 2006;311:17–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17048704.

    CAS  PubMed  Google Scholar 

  100. Shortman K, Liu Y-J. Mouse and human dendritic cell subtypes. Nat Rev Immunol. 2002;2:151–61. Available from: http://www.nature.com/doifinder/10.1038/nri746.

    Article  CAS  PubMed  Google Scholar 

  101. Kushwah R, Hu J. Complexity of dendritic cell subsets and their function in the host immune system. Immunology. 2011;133:409–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21627652.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Steinman RM, Idoyaga J. Features of the dendritic cell lineage. Immunol Rev. 2010;234:5–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20193008.

    Article  CAS  PubMed  Google Scholar 

  103. Chen P, Denniston AK, Hirani S, Hannes S, Nussenblatt RB. Role of dendritic cell subsets in immunity and their contribution to noninfectious uveitis. Surv Ophthalmol. 2015;60:242–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0039625715000041.

    Article  PubMed Central  PubMed  Google Scholar 

  104. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013;31:563–604. Available from: http://www.annualreviews.org/doi/10.1146/annurev-immunol-020711-074950.

    Article  CAS  PubMed  Google Scholar 

  105. Villadangos JA, Schnorrer P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol. 2007;7:543–55. Available from: http://www.nature.com/doifinder/10.1038/nri2103.

    Article  CAS  PubMed  Google Scholar 

  106. Segura E, Villadangos JA. Antigen presentation by dendritic cells in vivo. Curr Opin Immunol. 2009;21:105–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19342210.

    Article  CAS  PubMed  Google Scholar 

  107. Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12:557–69. Available from: http://www.nature.com/doifinder/10.1038/nri3254.

    Article  CAS  PubMed  Google Scholar 

  108. Förster R, Braun A, Worbs T. Lymph node homing of T cells and dendritic cells via afferent lymphatics. Trends Immunol. 2012;33:271–80. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1471490612000385.

    Article  CAS  PubMed  Google Scholar 

  109. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52. Available from: http://www.nature.com/doifinder/10.1038/32588.

    Article  CAS  PubMed  Google Scholar 

  110. Durand M, Segura E. The known unknowns of the human dendritic cell network. Front Immunol. 2015;6:129. Available from: http://journal.frontiersin.org/Article/10.3389/fimmu.2015.00129/abstract.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Heesters BA, Myers RC, Carroll MC. Follicular dendritic cells: dynamic antigen libraries. Nat Rev Immunol. 2014;14:495–504. Available from: http://www.nature.com/doifinder/10.1038/nri3689.

    Article  CAS  PubMed  Google Scholar 

  112. Kranich J, Krautler NJ. How follicular dendritic cells shape the B-cell antigenome. Front Immunol. 2016;7:225. Available from: http://journal.frontiersin.org/Article/10.3389/fimmu.2016.00225/abstract.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Dalod M, Chelbi R, Malissen B, Lawrence T. Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J. 2014;33:1104–16. Available from: http://emboj.embopress.org/cgi/doi/10.1002/embj.201488027.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A, et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med. 1999;5:919–23. Available from: http://www.nature.com/doifinder/10.1038/11360.

    Article  CAS  PubMed  Google Scholar 

  115. Nizzoli G, Krietsch J, Weick A, Steinfelder S, Facciotti F, Gruarin P, et al. Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses. Blood. 2013;122:932–42. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2013-04-495424.

    Article  CAS  PubMed  Google Scholar 

  116. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells--a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13:145–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23348417.

    Article  CAS  PubMed  Google Scholar 

  117. Sonnenberg GF, Mjösberg J, Spits H, Artis D. SnapShot: innate lymphoid cells. Immunity. 2013;39:622–622.e1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24012419.

    Article  CAS  PubMed  Google Scholar 

  118. Walker JA, Barlow JL, McKenzie ANJ. Innate lymphoid cells--how did we miss them? Nat Rev Immunol. 2013;13:75–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23292121.

    Article  CAS  PubMed  Google Scholar 

  119. Artis D, Spits H. The biology of innate lymphoid cells. Nature. 2015;517:293–301. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25592534.

    Article  CAS  PubMed  Google Scholar 

  120. Sonnenberg GF, Artis D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med. 2015;21:698–708. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26121198.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Klose CSN, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 2016;17:765–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27328006.

    Article  CAS  PubMed  Google Scholar 

  122. Lai D-M, Shu Q, Fan J. The origin and role of innate lymphoid cells in the lung. Mil Med Res. 2016;3:25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27547445.

    Article  PubMed Central  PubMed  Google Scholar 

  123. Kiessling R, Klein E, Pross H, Wigzell H. “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol. 1975;5:117–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1086218.

    Article  CAS  PubMed  Google Scholar 

  124. Pross HF, Jondal M. Cytotoxic lymphocytes from normal donors. A functional marker of human non-T lymphocytes. Clin Exp Immunol. 1975;21:226–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/810282.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Mebius RE, Rennert P, Weissman IL. Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity. 1997;7:493–504. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9354470.

    Article  CAS  PubMed  Google Scholar 

  126. Martinez-Gonzalez I, Mathä L, Steer CA, Takei F. Immunological memory of group 2 innate lymphoid cells. Trends Immunol. 2017;38:423–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28416448.

    Article  CAS  PubMed  Google Scholar 

  127. Sun JC, Lanier LL. NK cell development, homeostasis and function: parallels with CD8+ T cells. Nat Rev Immunol. 2011;11:645–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21869816.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Lanier LL. NKG2D receptor and its ligands in host defense. Cancer Immunol Res. 2015;3:575–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26041808.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Klose CSN, Flach M, Möhle L, Rogell L, Hoyler T, Ebert K, et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell. 2014;157:340–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24725403.

    Article  CAS  PubMed  Google Scholar 

  130. Sanati G, Aryan Z, Barbadi M, Rezaei N. Innate lymphoid cells are pivotal actors in allergic, inflammatory and autoimmune diseases. Expert Rev Clin Immunol. 2015;11:885–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26004582.

    Article  CAS  PubMed  Google Scholar 

  131. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9:503–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18425107.

    Article  CAS  PubMed  Google Scholar 

  132. Mandal A, Viswanathan C. Natural killer cells: in health and disease. Hematol Oncol Stem Cell Ther. 2015;8:47–55. https://doi.org/10.1016/j.hemonc.2014.11.006.

    Article  CAS  PubMed  Google Scholar 

  133. Moffett A, Colucci F. Uterine NK cells: active regulators at the maternal-fetal interface. J Clin Invest. 2014;124:1872–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24789879.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Björkström NK, Ljunggren H-G, Michaëlsson J. Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol. 2016;16:310–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27121652.

    Article  CAS  PubMed  Google Scholar 

  135. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22:633–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11698225.

    Article  CAS  PubMed  Google Scholar 

  136. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood. 2001;97:3146–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11342442.

    Article  CAS  PubMed  Google Scholar 

  137. Björkström NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA, et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood. 2010;116:3853–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20696944.

    Article  CAS  PubMed  Google Scholar 

  138. Lopez-Vergès S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, et al. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood. 2010;116:3865–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20733159.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Yu J, Mao HC, Wei M, Hughes T, Zhang J, Park I, et al. CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. Blood. 2010;115:274–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19897577.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Bryceson YT, Chiang SCC, Darmanin S, Fauriat C, Schlums H, Theorell J, et al. Molecular mechanisms of natural killer cell activation. J Innate Immun. 2011;3:216–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21454962.

    Article  CAS  PubMed  Google Scholar 

  141. Vilches C, Parham P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol. 2002;20:217–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11861603.

    Article  CAS  PubMed  Google Scholar 

  142. Ashouri E, Dabbaghmanesh MH, Ranjbar Omrani G. Presence of more activating KIR genes is associated with Hashimoto’s thyroiditis. Endocrine. 2014;46:519–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24174177.

    Article  CAS  PubMed  Google Scholar 

  143. Popko K, Górska E. The role of natural killer cells in pathogenesis of autoimmune diseases. Cent Eur J Immunol. 2015;4:470–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26862312.

    Article  CAS  Google Scholar 

  144. Ferlazzo G, Morandi B. Cross-talks between natural killer cells and distinct subsets of dendritic cells. Front Immunol. 2014;5:159. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24782864.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Ljunggren HG, Kärre K. In search of the “missing self”: MHC molecules and NK cell recognition. Immunol Today. 1990;11:237–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2201309.

    Article  CAS  PubMed  Google Scholar 

  146. Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song Y-J, Yang L, et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature. 2005;436:709–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16079848.

    Article  CAS  PubMed  Google Scholar 

  147. Boudreau JE, Liu X-R, Zhao Z, Zhang A, Shultz LD, Greiner DL, et al. Cell-extrinsic MHC class I molecule engagement augments human NK cell education programmed by cell-intrinsic MHC class I. Immunity. 2016;45:280–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27496730.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Fauriat C, Long EO, Ljunggren H-G, Bryceson YT. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 2010;115:2167–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19965656.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. O’Sullivan TE, Sun JC, Lanier LL. Natural killer cell memory. Immunity. 2015;43:634–45. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761315003982.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Cerwenka A, Lanier LL. Natural killer cell memory in infection, inflammation and cancer. Nat Rev Immunol. 2016;16:112–23. Available from: http://www.nature.com/doifinder/10.1038/nri.2015.9.

    Article  CAS  PubMed  Google Scholar 

  151. Rölle A, Brodin P. Immune adaptation to environmental influence: the case of NK cells and HCMV. Trends Immunol. 2016;37:233–43. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1471490616000065.

    Article  CAS  PubMed  Google Scholar 

  152. Baggio L, Laureano ÁM, Silla LM da R, Lee DA. Natural killer cell adoptive immunotherapy: coming of age. Clin Immunol. 2017;117:3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26883680.

    Article  CAS  Google Scholar 

  153. Li S, Yang D, Peng T, Wu Y, Tian Z, Ni B. Innate lymphoid cell-derived cytokines in autoimmune diseases. J Autoimmun. 2017;83:62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28479212.

    Article  CAS  PubMed  Google Scholar 

  154. Kronenberg M, Gapin L. The unconventional lifestyle of NKT cells. Nat Rev Immunol. 2002;2:557–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12154375.

    Article  CAS  PubMed  Google Scholar 

  155. Godfrey DI, Stankovic S, Baxter AG. Raising the NKT cell family. Nat Immunol. 2010;11:197–206. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20139988.

    Article  CAS  PubMed  Google Scholar 

  156. Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB. The burgeoning family of unconventional T cells. Nat Immunol. 2015;16:1114–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26482978.

    Article  CAS  PubMed  Google Scholar 

  157. Dusseaux M, Martin E, Serriari N, Péguillet I, Premel V, Louis D, et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood. 2011;117:1250–9. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2010-08-303339.

    Article  CAS  PubMed  Google Scholar 

  158. Kurioka A, Walker LJ, Klenerman P, Willberg CB. MAIT cells: new guardians of the liver. Clin Transl Immunol. 2016;5:e98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27588203.

    Article  CAS  Google Scholar 

  159. Jiang H, Chess L. The specific regulation of immune responses by CD8+ T cells restricted by the MHC class Ib molecule, Qa-1. Annu Rev Immunol. 2000;18:185–216. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10837057.

    Article  CAS  PubMed  Google Scholar 

  160. Anderson CK, Brossay L. The role of MHC class Ib-restricted T cells during infection. Immunogenetics. 2016;68:677–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27368413.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Malik S, Want MY, Awasthi A. The emerging roles of gamma-delta T cells in tissue inflammation in experimental autoimmune encephalomyelitis. Front Immunol. 2016;7:14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26858718.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  162. Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007;25:297–336. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17150027.

    Article  CAS  PubMed  Google Scholar 

  163. Dasgupta S, Kumar V. Type II NKT cells: a distinct CD1d-restricted immune regulatory NKT cell subset. Immunogenetics. 2016;68:665–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27405300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chan AC, Leeansyah E, Cochrane A, d’Udekem d’Acoz Y, Mittag D, Harrison LC, et al. Ex-vivo analysis of human natural killer T cells demonstrates heterogeneity between tissues and within established CD4(+) and CD4(-) subsets. Clin Exp Immunol. 2013;172:129–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23480193.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Kain L, Costanzo A, Webb B, Holt M, Bendelac A, Savage PB, et al. Endogenous ligands of natural killer T cells are alpha-linked glycosylceramides. Mol Immunol. 2015;68:94–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26141240.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Kuylenstierna C, Björkström NK, Andersson SK, Sahlström P, Bosnjak L, Paquin-Proulx D, et al. NKG2D performs two functions in invariant NKT cells: direct TCR-independent activation of NK-like cytolysis and co-stimulation of activation by CD1d. Eur J Immunol. 2011;41:1913–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21590763.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Kohlgruber AC, Donado CA, LaMarche NM, Brenner MB, Brennan PJ. Activation strategies for invariant natural killer T cells. Immunogenetics. 2016;68:649–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27457886.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Tatituri RVV, Watts GFM, Bhowruth V, Barton N, Rothchild A, Hsu F-F, et al. Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs. Proc Natl Acad Sci U S A. 2013;110:1827–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23307809.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Treiner E, Duban L, Moura IC, Hansen T, Gilfillan S, Lantz O. Mucosal-associated invariant T (MAIT) cells: an evolutionarily conserved T cell subset. Microbes Infect. 2005;7:552–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15777741.

    Article  CAS  PubMed  Google Scholar 

  170. Ussher JE, Klenerman P, Willberg CB. Mucosal-associated invariant T-cells: new players in anti-bacterial immunity. Front Immunol. 2014;5:450. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25339949.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  171. Wong EB, Ndung’u T, Kasprowicz VO. The role of MAIT cells in infectious diseases. Immunology. 2017;150:45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27633333.

    Article  CAS  PubMed  Google Scholar 

  172. Le Bourhis L, Martin E, Péguillet I, Guihot A, Froux N, Coré M, et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol. 2010;11:701–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20581831.

    Article  CAS  PubMed  Google Scholar 

  173. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature. 2012;491:717–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23051753.

    Article  CAS  PubMed  Google Scholar 

  174. Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, et al. Human mucosal-associated invariant T cells detect bacterially infected cells. PLoS Biol. 2010;8:e1000407. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20613858.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  175. Georgel P, Radosavljevic M, Macquin C, Bahram S. The non-conventional MHC class I MR1 molecule controls infection by Klebsiella pneumoniae in mice. Mol Immunol. 2011;48:769–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21190736.

    Article  CAS  PubMed  Google Scholar 

  176. Carding SR, Egan PJ. Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol. 2002;2:336–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12033739.

    Article  CAS  PubMed  Google Scholar 

  177. Ribeiro ST, Ribot JC, Silva-Santos B. Five layers of receptor signaling in γδ T-cell differentiation and activation. Front Immunol. 2015;6:15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25674089.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  178. Fay NS, Larson EC, Jameson JM. Chronic inflammation and γδ T cells. Front Immunol. 2016;7:210. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27303404.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Lalor SJ, McLoughlin RM. Memory γδ T cells-newly appreciated protagonists in infection and immunity. Trends Immunol. 2016;37:690–702. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1471490616300886.

    Article  CAS  PubMed  Google Scholar 

  180. Kabelitz D, Déchanet-Merville J. Recent advances in gamma/delta T cell biology: new ligands, new functions, and new translational perspectives. Front Immunol. 2015;6:371. Available from: http://journal.frontiersin.org/Article/10.3389/fimmu.2015.00371/abstract.

    Article  PubMed Central  PubMed  Google Scholar 

  181. Ribot JC, Debarros A, Silva-Santos B. Searching for “signal 2”: costimulation requirements of γδ T cells. Cell Mol Life Sci. 2011;68:2345–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21541698.

    Article  CAS  PubMed  Google Scholar 

  182. Correia DV, Lopes A, Silva-Santos B. Tumor cell recognition by γδ T lymphocytes: T-cell receptor vs. NK-cell receptors. Oncoimmunology. 2013;2:e22892. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23483102.

    Article  PubMed Central  PubMed  Google Scholar 

  183. Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK, et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol. 2003;4:670–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12796776.

    Article  CAS  PubMed  Google Scholar 

  184. Tefit JN, Crabé S, Orlandini B, Nell H, Bendelac A, Deng S, et al. Efficacy of ABX196, a new NKT agonist, in prophylactic human vaccination. Vaccine. 2014;32:6138–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25218293.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  185. Legut M, Cole DK, Sewell AK. The promise of γδ T cells and the γδ T cell receptor for cancer immunotherapy. Cell Mol Immunol. 2015;12:656–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25864915.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Land, W.G. (2018). Mobile Innate Immune Cells. In: Damage-Associated Molecular Patterns in Human Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-78655-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78655-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78654-4

  • Online ISBN: 978-3-319-78655-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics