Skip to main content

Tunable Orbits Influence in a Driven Stadium-Like Billiard

  • Chapter
  • First Online:
A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 22))

  • 1358 Accesses

Abstract

The dynamics of a driven stadium-like billiard is investigated through a four-dimensional nonlinear mapping. We set a critical resonance velocity, which plays the role of an ensemble separation according to the initial velocities. When the resonance is active, the invariant curves that surround the stability islands become stochastic layers, thus allowing a change in the dynamics from chaos to stability and vice versa, leading the root mean square velocity to steady state plateaus for long times. A tunneling behavior of orbits in the lower ensemble was characterized via transport analysis and Lyapunov exponents. Our results may be extended to other similar dynamical systems that may present similar critical resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hilborn, R. C. (1994). Chaos and nonlinear dynamics: An introduction for Scientists and Engineers. Oxford: Oxford University Press.

    Google Scholar 

  2. Lichtenberg, A. J., & Lieberman, M. A. (1992). Regular and chaotic dynamics. Applied mathematical science (Vol. 38). Berlin: Springer Verlag.

    Book  Google Scholar 

  3. Zaslasvsky, G. M. (2007). Physics of chaos in Hamiltonian systems. New York: Imperial College Press.

    Google Scholar 

  4. Zaslasvsky, G. M. (2008). Hamiltonian chaos and fractional dynamics. Oxford: Oxford University Press.

    Google Scholar 

  5. Altmann, E. G., Portela, J. S. E., & Tél, T. (2013). Leaking chaotic systems. Reviews of Modern Physics, 85, 869.

    Article  Google Scholar 

  6. Meiss, J. D. (2015). Thirty years of turnstiles and transport. Chaos, 25, 097602.

    Article  Google Scholar 

  7. Leine, R. I., & Nijmeijer, H. (2013). Dynamics and bifurcations of non-smooth mechanical systems (Vol. 18). Berlin: Springer Science & Business.

    Google Scholar 

  8. Solomon, T. H., Weeks, E. R., & Swinney, H. L. (1993). Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. Physical Review Letters, 71, 3975.

    Article  Google Scholar 

  9. del-Castillo-Negrete, D., Carreras, B. A., & Lynch, V. E. (2005). Nondiffusive transport in plasma turbulence: A fractional diffusion approach. Physical Review Letters, 94, 065003.

    Google Scholar 

  10. Portela, J. S. E., Caldas, I. L., & Viana, R. L. (2007). Fractal and wada exit basin boundaries in tokamaks. International Journal of Bifurcation and Chaos, 17, 4067.

    Article  MathSciNet  Google Scholar 

  11. Jimenez, G. A., & Jana, S. C. (2007). Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing. Composites: Part A 38, 983.

    Article  Google Scholar 

  12. He, P., Ma, S., & Fan, T. (2013). Finite-time mixed outer synchronization of complex networks with coupling time-varying delay. Chaos, 22, 043151.

    Article  MathSciNet  Google Scholar 

  13. Andersen, M. F., Kaplan, A., Grn̆zweig, T., & Davidson, N. (2006). Decay of quantum correlations in atom optics billiards with chaotic and mixed dynamics. Physical Review Letters, 97, 104102.

    Google Scholar 

  14. Abraham, N. B., & Firth, W. J. (1990). Overview of transverse effects in nonlinear-optical systems. Journal of the Optical Society of America B, 7(6), 951–962 (1990). https://doi.org/10.1364/JOSAB.7.000951.

    Article  Google Scholar 

  15. Milner, V., Hanssen, J. L., Campbell, W. C., & Raizen, M. G. (2001). Optical billiards for atoms. Physical Review Letters, 86, 1514.

    Article  Google Scholar 

  16. Altmann, E. G. (2009). Emission from dielectric cavities in terms of invariant sets of the chaotic ray dynamics. Physical Review A, 79, 013830.

    Article  Google Scholar 

  17. Chernov, N., & Markarian, R. (2006). Chaotic billiards (Vol. 127). Providence: American Mathematical Society.

    MATH  Google Scholar 

  18. Birkhoff, G. D. (1927). Dynamical systems. Providence: American Mathematical Society.

    Book  Google Scholar 

  19. Sinai, Y. G. (1970). Dynamical systems with elastic reflections. Russian Mathematical Surveys, 25, 137.

    Article  Google Scholar 

  20. Bunimovich, L. A. (1979). On the ergodic properties of nowhere dispersing billiards. Communications in Mathematical Physics, 65, 295.

    Article  MathSciNet  Google Scholar 

  21. Bunimovich, L. A., & Sinai, Y. G. (1981). Statistical properties of lorentz gas with periodic configuration of scatterers. Communications in Mathematical Physics, 78, 479.

    Article  MathSciNet  Google Scholar 

  22. Gallavotti, G., & Ornstein, D. S. (1974). Billiards and bernoulli schemes. Communications in Mathematical Physics, 38, 83.

    Article  MathSciNet  Google Scholar 

  23. Tanner, G., & Søndergaard, N. (2007). Wave chaos in acoustics and elasticity. Journal of Physics A, 40, 443.

    Article  MathSciNet  Google Scholar 

  24. Stein, J., & Støckmann, H. J. (1992). Experimental determination of billiard wave functions. Physical Review Letters, 68, 2867.

    Article  Google Scholar 

  25. Sirko, L., Koch, P. M., & Blümel, R. (1997). Experimental identification of non-newtonian orbits produced by ray splitting in a dielectric-loaded microwave cavity. Physical Review Letters, 78, 2940.

    Article  Google Scholar 

  26. Haake, F. (2001). Quantum signatures of chaos. Berlin: Springer.

    Book  Google Scholar 

  27. Ponomarenko, L. A., Schedin, F., Katsnelson, M. I., Yang, R., Hill, E. W., Novoselov, K. S., et al. (2008). Chaotic dirac billiard in graphene quantum dots. Science, 320, 356.

    Article  Google Scholar 

  28. Berggren, K. F., Yakimenko, I. I., & Hakanen, J. (2010). Modeling of open quantum dots and wave billiards using imaginary potentials for the source and the sink. New Journal of Physics, 12, 073005.

    Article  Google Scholar 

  29. Jalabert, R. A., Stone, A. D., & Alhassidd, Y. (1992). Statistical theory of Coulomb blockade oscillations: Quantum chaos in quantum dots. Physical Review Letters, 68, 3468.

    Article  Google Scholar 

  30. Meza-Montes, L., & Ulloa, S. E. (1997). Dynamics of two interacting particles in classical billiards. Physical Review E, 55, R6319.

    Article  MathSciNet  Google Scholar 

  31. Xavier, E. P. S., Santos, M. C., Dias da Silva, L. G. G. V., da Luz, M. G. E., & Beims, M. W. (2004). Quantum chaos for two interacting particles confined to a circular billiard. Physica A, 342, 377.

    Article  Google Scholar 

  32. Oliveira, H. A., Manchein, C., & Beims, M. W. (2008). Soft wall effects on interacting particles in billiards. Physical Review E, 78, 046208.

    Article  Google Scholar 

  33. Zharnitsky, V. (1995). Quasiperiodic motion in the billiard problem with a softened boundary. Physical Review Letters, 75, 4393.

    Article  Google Scholar 

  34. Fré, P., & Sorin, A. S. (2010). Supergravity black holes and billiards and the Liouville integrable structure associated with Borel algebras. Journal of High Energy Physics, 3, 1.

    MathSciNet  MATH  Google Scholar 

  35. Stone, A. D. (2010). Nonlinear dynamics: Chaotic billiard lasers. Nature, 465, 696.

    Article  Google Scholar 

  36. Bunimovich, L. A. (1974). On ergodic properties of certain billiards. Functional Analysis and Its Applications, 8, 73.

    Article  MathSciNet  Google Scholar 

  37. Livorati, A. L. P., Loskutov, A., & Leonel, E. D. (2011). A family of stadium- like billiards with parabolic boundaries under scaling analysis. Journal of Physics A, 44, 175102.

    Article  MathSciNet  Google Scholar 

  38. Loskutov, A., & Ryabov, A. (2002). Particle dynamics in time-dependent stadium-like billiards. Journal of Statistical Physics, 108, 995.

    Article  MathSciNet  Google Scholar 

  39. Loskutov, A., Ryabov, A. B., & Leonel, E. D. (2010). Separation of particles in time-dependent focusing billiards. Physica A, 389, 5408.

    Article  MathSciNet  Google Scholar 

  40. Markarian, R., Kamphorst, S. O., & de Carvalho, S. P. (1996). Chaotic properties of the elliptical stadium. Communications in Mathematical Physics, 174, 661.

    Article  MathSciNet  Google Scholar 

  41. Loskutov, A., Ryabov, A. B., & Akinshin, L. G. (1999). Mechanism of Fermi acceleration in dispersing billiards with time-dependent boundaries. Journal of Experimental and Theoretical Physics, 89, 966.

    Article  Google Scholar 

  42. Loskutov, A., Ryabov, A. B., & Akinshin, L. G. (2000). Properties of some chaotic billiards with time-dependent boundaries. Journal of Physics A, 33, 7973.

    Article  MathSciNet  Google Scholar 

  43. Fermi, E. (1949). On the origin of the cosmic radiation. Physical Review, 75, 1169.

    Article  Google Scholar 

  44. Lenz, F., Diakonos, F. K., & Schmelcher, P. (2008). Tunable fermi acceleration in the driven elliptical billiard. Physical Review Letters, 100, 014103.

    Article  Google Scholar 

  45. Lenz, F., Petri, C., Koch, F. R. N., Diakonos, F. K., & Schmelcher, P. (2009). Evolutionary phase space in driven elliptical billiards. New Journal of Physics, 11, 083035.

    Article  Google Scholar 

  46. Leonel, E. D., & Bunimovich, L. A. (2010). Suppressing fermi acceleration in a driven elliptical billiard. Physical Review Letters, 104, 224101.

    Article  Google Scholar 

  47. Livorati, A. L. P., Caldas, I. L., & Leonel, E. D. (2012). Decay of energy and suppression of Fermi acceleration in a dissipative driven stadium-like billiard. Chaos, 22, 026122.

    Article  MathSciNet  Google Scholar 

  48. Livorati, A. L. P., Loskutov, A., & Leonel, E. D. (2012). A peculiar Maxwell’s Demon observed in a time-dependent stadium-like billiard. Physica A, 391, 4756.

    Article  MathSciNet  Google Scholar 

  49. Livorati, A. L. P., Palmero, M. S., Dettmann, C. P., Caldas, I. L., & Leonel, E. D. (2014). Separation of particles leading either to decay or unlimited growth of energy in a driven stadium-like billiard. Journal of Physics A, 47, 365101.

    Article  MathSciNet  Google Scholar 

  50. Karlis, A. K., Papachristou, P. K., Diakonos, F. K., Constantoudis, V., & Schmelcher, P. (2006). Hyperacceleration in a stochastic Fermi-Ulam model. Physical Review Letters, 97, 194102.

    Article  Google Scholar 

  51. Livorati, A. L. P., Ladeira, D. G., & Leonel, E. D. (2008). Scaling investigation of Fermi acceleration on a dissipative bouncer model. Physical Review E, 78, 056205.

    Article  Google Scholar 

  52. Diaz-I, G., Livorati, A. L. P., & Leonel, E. D. (2016). Statistical investigation and thermal properties for a 1-D impact system with dissipation. Physics Letters A, 380, 1830.

    Article  Google Scholar 

  53. Livorati, A. L. P., de Oliveira, J. A., Ladeira, D. G., & Leonel, E. D. (2014). Time-dependent properties in two-dimensional and Hamiltonian mappings. The European Physical Journal Special Topics, 223, 2953.

    Article  Google Scholar 

  54. Livorati, A. L. P., Dettmann, C. P., Caldas, I. L., & Leonel, E. D. (2015). On the statistical and transport properties of a non-dissipative Fermi-Ulam model. Chaos, 25, 103107.

    Article  MathSciNet  Google Scholar 

  55. Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. Psysica D, 285, 16.

    MATH  Google Scholar 

  56. Szezech, J. D. J., Lopes, S. R., & Viana, R. L. (2005). Finite-time Lyapunov spectrum for chaotic orbits of non-integrable Hamiltonian systems. Physics Letters A, 335, 394.

    Article  MathSciNet  Google Scholar 

  57. Manchein, C., Beims, M. W., & Rost, J. M. (2014). Characterizing weak chaos in nonintegrable Hamiltonian systems: The fundamental role of stickiness and initial conditions. Physica A, 400, 186.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

ALPL acknowledges FAPESP (2014/25316-3) and FAPESP (2015/26699-6) for financial support. ALPL also thanks the University of Bristol for the kind hospitality during his stay in UK. This research was supported by resources supplied by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP). The author also acknowledges Alexander Loskutov (in memorian) for the art of Fig. 4.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André L. P. Livorati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Livorati, A.L.P. (2019). Tunable Orbits Influence in a Driven Stadium-Like Billiard. In: Macau, E. (eds) A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems . Nonlinear Systems and Complexity, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-78512-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78512-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78511-0

  • Online ISBN: 978-3-319-78512-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics