Skip to main content

Current Immunotherapy of Melanoma

  • Chapter
  • First Online:
Melanoma

Abstract

The immune system is intimately and comprehensively engaged in controlling and ultimately allowing the escape of cancer and specifically melanoma. In order to escape control, a variety of immune checkpoint are co-opted by melanoma. We describe the history of immune therapy in melanoma up to the present and highlight some of the areas of controversy and agreement. The development of accurate biomarkers has been an emerging field and has provided the impetus for the development of combination and sequential immunotherapies. Intratumoral immunotherapy holds great promise in melanoma specifically for patients with T-cell non-infiltrated or immune-resistant of “cold” tumors. We also review the latest developments in adjuvant and combination immunotherapy as well as the emerging field of immune-related adverse events which are unique to checkpoint inhibitors and need specific strategies for management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mort RL, Jackson IJ, Patton EE. The melanocyte lineage in development and disease. Development. 2015;142(4):620–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Daud A. Current and emerging perspectives on immunotherapy for melanoma. Semin Oncol. 2015;42(Suppl 3):S3–S11.

    Article  CAS  PubMed  Google Scholar 

  3. Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017. [published online ahead of print: April 4, 2017];14(8):463–82. https://doi.org/10.1038/nrclinonc.2017.43.

    Article  PubMed  CAS  Google Scholar 

  4. Kucerova P, Cervinkova M. Spontaneous regression of tumour and the role of microbial infection--possibilities for cancer treatment. Anti-Cancer Drugs. 2016;27(4):269–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Říhová B, Šťastný M. History of immuno-therapy - from coley toxins to check-points of the immune reaction. Klin Onkol. 2015;28(Suppl 4):4S8–14.

    Article  PubMed  Google Scholar 

  6. Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci. 1957;147(927):258–67.

    Article  CAS  Google Scholar 

  7. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982;155(6):1823–41.

    Article  CAS  Google Scholar 

  8. Atkins MB, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol Off J Am Soc Clin Oncol. 1999;17(7):2105–16.

    Article  CAS  Google Scholar 

  9. Harper K, et al. CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location. J Immunol. 1991;147(3):1037–44.

    PubMed  CAS  Google Scholar 

  10. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182(2):459–65.

    Article  CAS  PubMed  Google Scholar 

  11. Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med. 1996;183(6):2533–40.

    Article  CAS  PubMed  Google Scholar 

  12. Krummel MF, Allison JP. Pillars Article: CD28 and CTLA-4 Have Opposing Effects on the Response of T Cells to Stimulation. The Journal of Experimental Medicine. 1995. 182: 459–465. J Immunol. 2011;187(7):3459–65.

    PubMed  CAS  Google Scholar 

  13. Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weber JS, et al. Phase I/II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(36):5950–6.

    Article  CAS  Google Scholar 

  15. Wolchok JD, et al. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann N Y Acad Sci. 2013;1291:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Shinohara T, Taniwaki M, Ishida Y, Kawaichi M, Honjo T. Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics. 1994;23(3):704–6.

    Article  CAS  PubMed  Google Scholar 

  18. Agata Y, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996;8(5):765–72.

    Article  CAS  PubMed  Google Scholar 

  19. Topalian SL, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brahmer JR, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(19):3167–75.

    Article  CAS  Google Scholar 

  21. Topalian SL, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving Nivolumab. J Clin Oncol. 2014;32(10):1020–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Spranger S, Sivan A, Corrales L, Gajewski TF. Tumor and host factors controlling antitumor immunity and efficacy of cancer immunotherapy. Adv Immunol. 2016;130:75–93.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bui JD, Schreiber RD. Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr Opin Immunol. 2007;19(2):203–8.

    Article  CAS  PubMed  Google Scholar 

  25. O’Sullivan T, et al. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J Exp Med. 2012;209(10):1869–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matsushita H, et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature. 2012;482(7385):400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abbas AK, Janeway CA. Immunology: improving on nature in the twenty-first century. Cell. 2000;100(1):129–38.

    Article  CAS  PubMed  Google Scholar 

  28. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.

    Article  CAS  PubMed  Google Scholar 

  29. Pitt JM, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44(6):1255–69.

    Article  CAS  PubMed  Google Scholar 

  30. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fricke I, Gabrilovich DI. Dendritic cells and tumor microenvironment: a dangerous liaison. Immunol Investig. 2006;35(3–4):459–83.

    Article  CAS  Google Scholar 

  32. Gabrilovich DI, Nadaf S, Corak J, Berzofsky JA, Carbone DP. Dendritic cells in antitumor immune responses: II dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors. Cell Immunol. 1996;170(1):111–9.

    Article  CAS  PubMed  Google Scholar 

  33. Renner K, et al. Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Front Immunol. 2017;8:248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tumeh PC, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Feng Z, et al. Multispectral imaging of formalin-fixed tissue predicts ability to generate tumor-infiltrating lymphocytes from melanoma. J Immunother Cancer. 2015;3:47.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Broz ML, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell. 2014;26(5):638–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Daud AI, et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J Clin Invest. 2016. [published online ahead of print: August 15, 2016];126(9):3447–52. https://doi.org/10.1172/JCI87324.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Loo K, et al. Partially exhausted tumor-infiltrating lymphocytes predict response to combination immunotherapy [Internet]. JCI Insight. 2017;2(14):93433. https://doi.org/10.1172/jci.insight.93433.

    Article  PubMed  Google Scholar 

  39. Hodi FS, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci U S A. 2008;105(8):3005–10.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Weber JS, Kähler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30(21):2691–7. https://doi.org/10.1200/JCO.2012.41.6750.

    Article  PubMed  CAS  Google Scholar 

  41. Homet Moreno B, Parisi G, Robert L, Ribas A. Anti-PD-1 therapy in melanoma. Semin Oncol. 2015;42(3):466–73.

    Article  CAS  PubMed  Google Scholar 

  42. Brahmer JR, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hamid O, et al. Safety and tumor responses with Lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44. [published online ahead of print: June 2, 2013]. https://doi.org/10.1056/NEJMoa1305133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Robert C, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.

    Article  CAS  Google Scholar 

  45. Larkin J, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ribas A, et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA. 2016;315(15):1600–9.

    Article  CAS  PubMed  Google Scholar 

  47. Robert C, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. [published online ahead of print: July 14, 2014]. 2014;384(9948):1109–17. https://doi.org/10.1016/S0140-6736(14)60958-2.

    Article  PubMed  CAS  Google Scholar 

  48. Ribas A, et al. Efficacy and safety of the anti-PD-1 monoclonal antibody MK-3475 in 411 patients (pts) with melanoma (MEL). [Internet]. J Clin Oncol. 2014;32(5s(suppl)):abstr LBA9000. http://meetinglibraryascoorg/content/133842-144. Accessed 20 Nov 2014

    Article  Google Scholar 

  49. Daud AI, et al. Programmed death-ligand 1 expression and response to the anti-programmed death 1 antibody Pembrolizumab in melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(34):4102–9.

    Article  CAS  Google Scholar 

  50. Wolchok JD, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Munn DH. Indoleamine 2,3-dioxygenase, tumor-induced tolerance and counter-regulation. Curr Opin Immunol. 2006;18(2):220–5.

    Article  CAS  PubMed  Google Scholar 

  52. Platten M, Litzenburger U, Wick W. The aryl hydrocarbon receptor in tumor immunity. Oncoimmunology. 2012;1(3):396–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bessede A, et al. Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature. 2014;511(7508):184–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Platten M, von Knebel Doeberitz N, Oezen I, Wick W, Ochs K. Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front Immunol. 2014;5:673.

    PubMed  Google Scholar 

  55. Schulte KW, Green E, Wilz A, Platten M, Daumke O. Structural basis for aryl hydrocarbon receptor-mediated gene activation. Structure. 2017;25(7):1025–1033.e3.

    Article  CAS  PubMed  Google Scholar 

  56. Gangadhar TC, Hamid O, Smith D, et al. Preliminary results from a Phase I/II study of epacadostat (incb024360) in combination with pembrolizumab in patients with selected advanced cancers. J Immunother Cancer. 2015;3(Suppl 2):07. https://doi.org/10.1186/2051-1426-3-S2-O7.

    Article  Google Scholar 

  57. Daud A, et al. Intratumoral electroporation of plasmid interleukin-12: efficacy and biomarker analyses from a phase 2 study in melanoma (OMS-I100). J Transl Med. 2015;13:2068.

    Google Scholar 

  58. Cha E, Daud A. Plasmid IL-12 electroporation in melanoma. Hum Vaccin Immunother. 2012;8(11):1734–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Harrington KJ, et al. Efficacy and safety of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in patients with stage IIIB/C and IVM1a melanoma: subanalysis of the phase III OPTiM trial. OncoTargets Ther. 2016;9:7081–93.

    Article  CAS  Google Scholar 

  60. Andtbacka RHI, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(25):2780–8.

    Article  CAS  Google Scholar 

  61. Andtbacka RHI, et al. Patterns of clinical response with talimogene laherparepvec (T-VEC) in patients with melanoma treated in the OPTiM phase III clinical trial. Ann Surg Oncol. 2016;23(13):4169–77.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ribas A, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2017;170(6):1109–1119.e10.

    Article  CAS  Google Scholar 

  63. Tarhini AA, Kirkwood JM. Clinical and immunologic basis of interferon therapy in melanoma. Ann N Y Acad Sci. 2009;1182:47–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kirkwood JM, et al. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the eastern cooperative oncology group trial EST 1684. J Clin Oncol Off J Am Soc Clin Oncol. 1996;14(1):7–17.

    Article  CAS  Google Scholar 

  65. Kirkwood JM, et al. High- and low-dose interferon alfa-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190. J Clin Oncol Off J Am Soc Clin Oncol. 2000;18(12):2444–58.

    Article  CAS  Google Scholar 

  66. Kirkwood JM, et al. High-dose interferon alfa-2b does not diminish antibody response to GM2 vaccination in patients with resected melanoma: results of the Multicenter Eastern Cooperative Oncology Group Phase II Trial E2696. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19(5):1430–6.

    Article  CAS  Google Scholar 

  67. Hoshimoto S, et al. Assessment of prognostic circulating tumor cells in a phase III trial of adjuvant immunotherapy after complete resection of stage IV melanoma. Ann Surg. 2012;255(2):357–62.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Overwijk WW. Cancer vaccines in the era of checkpoint blockade: the magic is in the adjuvant. Curr Opin Immunol. 2017;47:103–9.

    Article  CAS  PubMed  Google Scholar 

  69. Eggermont AMM, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16(5):522–30.

    Article  CAS  PubMed  Google Scholar 

  70. Weber J, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. [published online ahead of print: September 10, 2017]. 2017;377:1824–35. https://doi.org/10.1056/NEJMoa1709030.

    Article  PubMed  CAS  Google Scholar 

  71. Loo K, Daud A. Emerging biomarkers as predictors to anti-PD1/PD-L1 therapies in advanced melanoma. Immunotherapy. 2016;8(7):775–84.

    Article  CAS  PubMed  Google Scholar 

  72. Loo K, et al. Novel T cell exhaustion marker to predict monotherapy PD-1 compared to combination CTLA-4 and PD-1 response in melanoma. J Clin Oncol. 2016;34(15 Suppl):9520.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Daud M.B.B.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loo, K., Wu, C., Daud, A. (2018). Current Immunotherapy of Melanoma. In: Riker, A. (eds) Melanoma. Springer, Cham. https://doi.org/10.1007/978-3-319-78310-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78310-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78309-3

  • Online ISBN: 978-3-319-78310-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics