Skip to main content

Animation as a Visual Indicator of Positional Uncertainty in Geographic Information

  • Conference paper
  • First Online:
Geospatial Technologies for All (AGILE 2018)

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Included in the following conference series:

Abstract

Effectively communicating the uncertainty that is inherent in any kind of geographic information remains a challenge. This paper investigates the efficacy of animation as a visual variable to represent positional uncertainty in a web mapping context. More specifically, two different kinds of animation (a ‘bouncing’ and a ‘rubberband’ effect) have been compared to two static visual variables (symbol size and transparency), as well as different combinations of those variables in an online experiment with 163 participants. The participants’ task was to identify the most and least uncertain point objects in a series of web maps. The results indicate that the use of animation to represent uncertainty imposes a learning step on the participants, which is reflected in longer response times. However, once the participants got used to the animations, they were both more consistent and slightly faster in solving the tasks, especially when the animation was combined with a second visual variable. According to the test results, animation is also particularly well suited to represent positional uncertainty, as more participants interpreted the animated visualizations correctly, compared to the static visualizations using symbol size and transparency. Somewhat contradictory to those results, the participants showed a clear preference for those static visualizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See https://d3js.org.

  2. 2.

    See https://github.com/d3/d3-ease#easeElastic.

  3. 3.

    The experiment is available online at http://carsten.io/uncertainty/. The corresponding source code and data produced is available at https://github.com/crstn/UncertD3/.

  4. 4.

    Some of the participants had single pages open for several minutes; since it is more likely that they answered the phone or went to get a coffee instead of actually looking at the test page for such a long time, all values above 60 s were set to 60 s.

References

  • Andrienko G, Andrienko N, Demsar U, Dransch D, Dykes J, Fabrikant SI, Jern M, Kraak MJ, Schumann H, Tominski C (2010) Space, time and visual analytics. Int J Geogr Inf Sci 24(10):1577–1600

    Article  Google Scholar 

  • Battista MT (1990) Spatial visualization and gender differences in high school geometry source. J Res Math Educ 21(1):47–60

    Article  Google Scholar 

  • Bertin J (1973) S’emiologie graphique: Les diagrammes-Les réseaux-Les cartes. Gauthier-Villars Mouton & Cie, Paris

    Google Scholar 

  • Broering A, Remke A, Stasch C, Autermann C, Rieke M, Moellers J (2015) enviroCar: a citizen science plattform for analyzing and mapping crowdsourced car sensor data. Trans GIS 19:362–376

    Article  Google Scholar 

  • Buschmann S, Trapp M, Döllner J (2016) Animated visualization of spatial-temporal trajectory data for air-traffic analysis. Visual Comput 32(3):371–381. https://doi.org/10.1007/s00371-015-1185-9. http://link.springer.com/10.1007/s00371-015-1185-9

  • Couclelis H (2003) The certainty of uncertainty: GIS and the limits of geographic knowledge. Trans GIS 7(2):165–175

    Article  Google Scholar 

  • Davis TJ, Keller C (1997) Modelling and visualizing multiple spatial uncertainties. Comput Geosci 23(4):397–408

    Article  Google Scholar 

  • DiBiase D, MacEachren AM, Krygier JB, Reeves C (1992) Animation and the role of map design in scientific visualization. Cartogr Geogr Inf Syst 19(4):201–214

    Google Scholar 

  • Duckham M, Mason K, Stell J, Worboys M (2001) A formal approach to imperfection in geographic information. Comput Environ Urban Syst 25(1):89–103

    Article  Google Scholar 

  • Ehlschlaeger CR, Shortridge AM, Goodchild MF (1997) Visualizing spatial data uncertainty using animation. Comput Geosci 23(4):387–395

    Article  Google Scholar 

  • Evans BJ (1997) Dynamic display of spatial data-reliability: does it benefit the map user? Comput Geosci 23(4):409–422

    Google Scholar 

  • Fisher PF (1993) Visualizing uncertainty in soil maps by animation. Cartogr: Int J Geogr Inf Geovisual 30(2–3):20–27

    Google Scholar 

  • Fisher PF (1999) Models of uncertainty in spatial data. Geogr Inf Syst 1:191–205

    Google Scholar 

  • Gahegan M, Ehlers M (2000) A framework for the modelling of uncertainty between remote sensing and geographic information systems. ISPRS J Photogram Remote Sens 55(3):176–188

    Article  Google Scholar 

  • Harrower M, Fabrikant S (2008) The role of map animation for geographic visualization. In: Dodge M, McDerby M, Turner M (eds) Geographic visualization. Wiley, pp 49–65

    Google Scholar 

  • Kinkeldey C, MacEachren AM, Schiewe J (2014) How to assess visual communication of uncertainty? A systematic review of geospatial uncertainty visualisation user studies. Cartogr J 51(4):372–386

    Article  Google Scholar 

  • Kinkeldey C, MacEachren AM, Riveiro M, Schiewe J (2017) Evaluating the effect of visually represented geodata uncertainty on decision-making: systematic review, lessons learned, and recommendations. Cartogr Geogr Inf Sci 44(1):1–21

    Article  Google Scholar 

  • Kraak MJ, Edsall R, MacEachren AM (1997) Cartographic animation and legends for temporal maps: exploration and or interaction. In: Proceedings of the 18th international cartographic conference, international cartographic association, vol 1, pp 253–261

    Google Scholar 

  • Longley P, Goodchild MF, Maguire DJ, Rhind DW (2005) Geographic information systems and science, 2nd edn. Wiley

    Google Scholar 

  • MacEachren AM (1992) Visualizing uncertain information. Cartogr Perspect 13:10–19

    Article  Google Scholar 

  • MacEachren AM, Robinson A, Hopper S, Gardner S, Murray R, Gahegan M, Hetzler E (2005) Visualizing geospatial information uncertainty: what we know and what we need to know. Cartogr Geogr Inf Sci 32(3):139–160

    Article  Google Scholar 

  • Maeda Y, Yoon SY (2013) A meta-analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization tests: visualization of rotations (PSVT:R). Educ Psychol Rev 25(1):69–94. https://doi.org/10.1007/s10648-012-9215-x. arXiv:0507464v2

  • McKenzie G, Hegarty M, Barrett T, Goodchild M (2016) Assessing the effectiveness of different visualizations for judgments of positional uncertainty. Int J Geogr Inf Sci 30(2):221–239

    Article  Google Scholar 

  • Montello DR, Goodchild MF, Gottsegen J, Fohl P (2003) Where’s downtown?: behavioral methods for determining referents of vague spatial queries. Spat Cogn Comput 3(2–3):185–204

    Google Scholar 

  • Reyes MEP, Chen SC (2017) A 3D virtual environment for storm surge flooding animation. In: 2017 IEEE third international conference on multimedia big data (BigMM), pp 244–245. https://doi.org/10.1109/BigMM.2017.54

  • Riveiro M (2016) Visually supported reasoning under uncertain conditions: effects of domain expertise on air traffic risk assessment. Spat Cogn Comput 16(2):133–153

    Google Scholar 

  • Roth RE (2009a) The impact of user expertise on geographic risk assessment under uncertain conditions. Cartogr Geogr Inf Sci 36(1):29–43

    Article  Google Scholar 

  • Roth RE (2009b) A qualitative approach to understanding the role of geographic information uncertainty during decision making. Cartogr Geogr Inf Sci 36(4):315–330

    Article  Google Scholar 

  • Russo P, Pettit C, Çöltekin A, Imhof M, Cox M, Bayliss C (2014) Understanding soil acidification process using animation and text: an empirical user evaluation with eye tracking. Springer, Berlin, pp 431–448. https://doi.org/10.1007/978-3-642-32618-9_31

  • Senaratne H, Gerharz L, Pebesma E, Schwering A (2012) Usability of spatio-temporal uncertainty visualisation methods. In: Gensel J, Josselin D, Vandenbroucke D (eds) Bridging the geographic information sciences: international AGILE’2012 conference, Avignon (France), 24–27 April 2012. Springer, Berlin, pp 3–23

    Google Scholar 

  • Smith J, Retchless D, Kinkeldey C, Klippel A (2013) Beyond the surface: current issues and future directions in uncertainty visualization research. In: Buchroithner MF, Prechtel N, Burghardt D, Pippig K, Schröter B (eds) Proceedigs of the 26th international cartographic conference, international cartographic association, pp 1–10

    Google Scholar 

  • Wang D, Guo D, Zhang H (2017) Spatial temporal data visualization in emergency management: a view from data-driven decision. In: Proceedings of the 3rd ACM SIGSPATIAL workshop on emergency management using ACM, New York, NY, USA, EM-GIS’17. pp 8:1–8:7. https://doi.org/10.1145/3152465.3152473. http://doi.acm.org/10.1145/3152465.3152473

  • Williams M, Cornford D, Bastin L, Ingram B (2008) UncertML: an XML schema for exchanging uncertainty. In: Proceedings of GISRUK, Manchester, UK 44

    Google Scholar 

  • Worboys M (1998) Computation with imprecise geospatial data. Comput Environ Urban Syst 22(2):85–106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Keßler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keßler, C., Lotstein, E. (2018). Animation as a Visual Indicator of Positional Uncertainty in Geographic Information. In: Mansourian, A., Pilesjö, P., Harrie, L., van Lammeren, R. (eds) Geospatial Technologies for All. AGILE 2018. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-78208-9_19

Download citation

Publish with us

Policies and ethics