Skip to main content

On the Use of Dynamic GP Fitness Cases in Static and Dynamic Optimisation Problems

  • Conference paper
  • First Online:
Book cover Artificial Evolution (EA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10764))

Abstract

In Genetic Programming (GP), the fitness of individuals is normally computed by using a set of fitness cases (FCs). Research on the use of FCs in GP has primarily focused on how to reduce the size of these sets. However, often, only a small set of FCs is available and there is no need to reduce it. In this work, we are interested in using the whole FCs set, but rather than adopting the commonly used GP approach of presenting the entire set of FCs to the system from the beginning of the search, referred as static FCs, we allow the GP system to build it by aggregation over time, named as dynamic FCs, with the hope to make the search more amenable. Moreover, there is no study on the use of FCs in Dynamic Optimisation Problems (DOPs). To this end, we also use the Kendall Tau Distance (KTD) approach, which quantifies pairwise dissimilarities among two lists of fitness values. KTD aims to capture the degree of a change in DOPs and we use this to promote structural diversity. Results on eight symbolic regression functions indicate that both approaches are highly beneficial in GP.

E. Galván-López—Research conducted during Galván’s stay at TAU, INRIA and LRI, CNRS & U. Paris-Sud, Université Paris-Saclay, France.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    50 independent runs, 2 types of replacement of individuals (arbitrary, Kendall tau distance-based), 3 types of changes, 8 problems.

References

  1. Galván-López, E., Ait ElHara, O.: Using fitness comparison disagreements as a metric for promoting diversity in dynamic optimisation problems. In: IEEE Symposium Series on Computational Intelligence. Springer (2016)

    Google Scholar 

  2. Galván-López, E., McDermott, J., O’Neill, M., Brabazon, A.: Defining locality in genetic programming to predict performance. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)

    Google Scholar 

  3. Galván-López, E., McDermott, J., O’Neill, M., Brabazon, A.: Towards an understanding of locality in genetic programming. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010, pp. 901–908. ACM, New York (2010)

    Google Scholar 

  4. Galván-López, E., McDermott, J., O’Neill, M., Brabazon, A.: Defining locality as a problem difficulty measure in genetic programming. Genet. Program. Evolvable Mach. 12(4), 365–401 (2011)

    Article  Google Scholar 

  5. Galván-López, E., Mezura-Montes, E., Ait ElHara, O., Schoenauer, M.: On the use of semantics in multi-objective genetic programming. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 353–363. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_33

    Chapter  Google Scholar 

  6. Galván-López, E., Trujillo, L., McDermott, J., Kattan, A.: Locality in continuous fitness-valued cases and genetic programming difficulty. In: Schütze, O., Coello, C.A.C., Tantar, A., Tantar, E., Bouvry, P., Moral, P.D., Legrand, P. (eds.) EVOLVE 2012. AISC, vol. 175, pp. 41–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31519-0_3

    Chapter  Google Scholar 

  7. Galván-López, E., Vázquez-Mendoza, L., Schoenauer, M., Trujillo, L.: Dynamic GP fitness cases in static and dynamic optimisation problems. In: Bosman, P.A.N. (ed.) Genetic and Evolutionary Computation Conference, Berlin, Germany, 15–19 July 2017, Companion Material Proceedings, pp. 227–228. ACM (2017)

    Google Scholar 

  8. Galván-López, E., Vázquez-Mendoza, L., Trujillo, L.: Stochastic semantic-based multi-objective genetic programming optimisation for classification of imbalanced data. In: Pichardo-Lagunas, O., Miranda-Jiménez, S. (eds.) MICAI 2016. LNCS (LNAI), vol. 10062, pp. 261–272. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62428-0_22

    Chapter  Google Scholar 

  9. Gathercole, C., Ross, P.: Dynamic training subset selection for supervised learning in genetic programming. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 312–321. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_275

    Chapter  Google Scholar 

  10. Giacobini, M., Tomassini, M., Vanneschi, L.: Limiting the number of fitness cases in genetic programming using statistics. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 371–380. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45712-7_36

    Google Scholar 

  11. Gonçalves, I., Silva, S.: Balancing learning and overfitting in genetic programming with interleaved sampling of training data. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 73–84. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0_7

    Chapter  Google Scholar 

  12. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann (1995)

    Google Scholar 

  13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  14. La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO 2016, pp. 741–748. ACM, New York (2016)

    Google Scholar 

  15. Lasarczyk, C.W.G., Dittrich, P.W.G., Banzhaf, W.W.G.: Dynamic subset selection based on a fitness case topology. Evol. Comput. 12(2), 223–242 (2004)

    Article  Google Scholar 

  16. López, U., Trujillo, L., Martinez, Y., Legrand, P., Naredo, E., Silva, S.: RANSAC-GP: dealing with outliers in symbolic regression with genetic programming. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 114–130. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3_8

    Chapter  Google Scholar 

  17. Macedo, J., Costa, E., Marques, L.: Genetic programming algorithms for dynamic environments. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9598, pp. 280–295. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31153-1_19

    Chapter  Google Scholar 

  18. Martínez, Y., Naredo, E., Trujillo, L., Legrand, P., López, U.: A comparison of fitness-case sampling methods for genetic programming. J. Exp. Theor. Artif. Intell. 1–22 (2017)

    Google Scholar 

  19. McDermott, J., et al.: Genetic programming needs better benchmarks. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO 2012, pp. 791–798. ACM, New York (2012)

    Google Scholar 

  20. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)

    Article  Google Scholar 

  21. Riekert, M., Malan, K.M., Engelbrect, A.P.: Adaptive genetic programming for dynamic classification problems. In: Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, CEC 2009, pp. 674–681. IEEE Press, Piscataway (2009)

    Google Scholar 

  22. Spector, L.: Assessment of problem modality by differential performance of lexicase selection in genetic programming: a preliminary report. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference Companion, GECCO Companion 2012, pp. 401–408. ACM (2012)

    Google Scholar 

  23. Teller, A., Andre, D.: Automatically choosing the number of fitness cases: the rational allocation of trials. In: Koza, J.R., et al. (eds.) Genetic Programming 1997: Proceedings of the Second Annual Conference, Stanford University, CA, USA, 13–16 July 1997, pp. 321–328. Morgan Kaufmann (1997)

    Google Scholar 

  24. Vanneschi, L., Cuccu, G.: A study of genetic programming variable population size for dynamic optimization problems. In: IJCCI, pp. 119–126 (2009)

    Google Scholar 

  25. Wagner, N., Michalewicz, Z., Khouja, M., McGregor, R.R.: Time series forecasting for dynamic environments: the DyFor genetic program model. IEEE Trans. Evol. Comput. 11(4), 433–452 (2007)

    Article  Google Scholar 

  26. Zhang, B.-T., Cho, D.-Y.: Genetic programming with active data selection. In: McKay, B., Yao, X., Newton, C.S., Kim, J.-H., Furuhashi, T. (eds.) SEAL 1998. LNCS (LNAI), vol. 1585, pp. 146–153. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48873-1_20

    Chapter  Google Scholar 

Download references

Acknowledgments

EGL would like to thank the TAU group at INRIA Saclay for hosting him during the outgoing phase of his Marie Curie fellowship and for financially supporting him to present this work at the conference. LT would like to thank CONACYT (project FC-2015-2:944) for providing partial funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Galván-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galván-López, E., Vázquez-Mendoza, L., Schoenauer, M., Trujillo, L. (2018). On the Use of Dynamic GP Fitness Cases in Static and Dynamic Optimisation Problems. In: Lutton, E., Legrand, P., Parrend, P., Monmarché, N., Schoenauer, M. (eds) Artificial Evolution. EA 2017. Lecture Notes in Computer Science(), vol 10764. Springer, Cham. https://doi.org/10.1007/978-3-319-78133-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78133-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78132-7

  • Online ISBN: 978-3-319-78133-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics