Skip to main content

Energy Analysis of a 4D Variational Data Assimilation Algorithm and Evaluation on ARM-Based HPC Systems

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10778))

  • 1039 Accesses

Abstract

Driven by the emerging requirements of High Performance Computing (HPC) architectures, the main focus of this work is the interplay of computational and energetic aspects of a Four Dimensional Variational (4DVAR) Data Assimilation algorithm, based on Domain Decomposition (named DD-4DVAR). We report first results on the energy consumption of the DD-4DVAR algorithm on embedded processor and a mathematical analysis of the energy behavior of the algorithm by assuming the architectures characteristics as variable of the model. The main objective is to capture the essential operations of the algorithm exhibiting a direct relationship with the measured energy. The experimental evaluation is carried out on a set of mini-clusters made available by the Barcelona Supercomputing Center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due the time complexity of the computation, for each Megabyte, the values on \(n_C\) which is independent from the computing architecture, is such that: \(n_{C,1}= \left\lceil \left( \frac{1048576}{8*3}\right) ^{\frac{1}{6}} \right\rceil = 6\), where \(\lceil \cdot \rceil \) denotes the integer part.

References

  1. Arcucci, R., D’Amore, L., Carracciuolo, L., Scotti, G., Laccetti, G.: A decomposition of the tikhonov regularization functional oriented to exploit hybrid multilevel parallelism. Int. J. Parallel Prog. 45(5), 1214–1235 (2017)

    Article  Google Scholar 

  2. Arcucci, R., D’Amore, L., Carracciuolo, L.: On the problem-decomposition of scalable 4D-Var data assimilation models. In: Proceedings of HPCS 2015, pp. 589–594 (2015)

    Google Scholar 

  3. Arcucci, R., D’Amore, L., Pistoia, J., Toumi, R., Murli, A.: On the variational data assimilation problem solving and sensitivity analysis. JCPH 335, 311–326 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Boccia, V., Carracciuolo, L., Laccetti, G., Lapegna, M., Mele, V.: HADAB: enabling fault tolerance in parallel applications running in distributed environments. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7203, pp. 700–709. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31464-3_71

    Chapter  Google Scholar 

  5. Carracciuolo, L., D’Amore, L., Murli, A.: Towards a parallel component for imaging in PETSc programming environment: a case study in 3-D echocardiography. Parallel Comput. 32, 67–83 (2006)

    Article  MathSciNet  Google Scholar 

  6. Caruso, P., Laccetti, G., Lapegna, M.: A performance contract system in a grid enabling, component based programming environment. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 982–992. Springer, Heidelberg (2005). https://doi.org/10.1007/11508380_100

    Chapter  Google Scholar 

  7. Chandrakasan, A.P., Sheng, S., Brodersen, R.W.: Low-power CMOS digital design. J. Solid-State Circ. 27(4) (1992)

    Google Scholar 

  8. D’Amore, L., Arcucci, R., Marcellino, L., Murli, A.: HPC computation issues of the incremental 3D variational data assimilation scheme in OceanVar software. JNAIAM 7(3–4), 91–105 (2012)

    MathSciNet  MATH  Google Scholar 

  9. D’Amore, L., Arcucci, R., Carracciuolo, L., Murli, A.: A scalable approach to variational data assimilation. J. Sci. Comput. 2, 239–257 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Di Lauro, R., Giannone, F., Ambrosio, L., Montella, R.: Virtualizing general purpose GPUs for high performance cloud computing: an application to a fluid simulator. In: Proceedings of 10th IEEE International Symposium on Parallel and Distributed Processing with Applications, ISPA (2012)

    Google Scholar 

  11. Gregoretti, F., Laccetti, G., Murli, A., Oliva, G., Scafuri, U.: MGF: a grid-enabled MPI library. Future Gener. Comput. Syst. (FGCS) 24(2), 158–165 (2008)

    Article  Google Scholar 

  12. Guarracino, M.R., Laccetti, G., Murli, A.: Application oriented brokering in medical imaging: algorithms and software architecture. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 972–981. Springer, Heidelberg (2005). https://doi.org/10.1007/11508380_99

    Chapter  Google Scholar 

  13. Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  14. Korthikanti, V.A., Agha, G.: Energy-performance trade-off analysis of parallel algorithms. In: Hot Topics in Parallelism (HotPar) (2010)

    Google Scholar 

  15. Laccetti, G., Lapegna, M., Mele, V., Romano, D., Murli, A.: A double adaptive algorithm for multidimensional integration on multicore based HPC systems. Int. J. Parallel Program. (IJPP) 40(4), 397–409 (2012)

    Article  Google Scholar 

  16. Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUs on ARM clusters for the next generation of high performance cloud computing. Cluster Comput. 17(1), 139–152 (2014)

    Article  Google Scholar 

  17. Montella, R., Giunta, G., Laccetti, G., Lapegna, M., Palmieri, C., Ferraro, C., Pelliccia, V.: Virtualizing CUDA enabled GPGPUs on ARM clusters. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 3–14. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32152-3_1

    Chapter  Google Scholar 

  18. Murli, A., Boccia, V., Carracciuolo, L., D’Amore, L., Laccetti, G., Lapegna, M.: Monitoring and migration of a PETSc-based parallel application for medical imaging in a grid computing PSE. In: Gaffney, P.W., Pool, J.C.T. (eds.) Grid-Based Problem Solving Environments. ITIFIP, vol. 239, pp. 421–432. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-73659-4_25

    Chapter  Google Scholar 

  19. Murli, A., D’Amore, L., Laccetti, G., Gregoretti, F., Oliva, G.: A multi-grained distributed implementation of the parallel Block Conjugate Gradient algorithm. Concurr. Comput.: Pract. Exp. 22(15), 2053–2072 (2010)

    Google Scholar 

  20. Rajovic, N., Carpenter, P.M., Gelado, I., Puzovic, N., Ramirez, A., Valero, M.R.: Supercomputing with commodity CPUs: are mobile SoCs ready for HPC? In: International Conference on High Performance Computing, Networking, Storage and Analysis (SC), pp. 1–12 (2013)

    Google Scholar 

  21. Rajovic, N., et al.: The Mont-Blanc prototype: an alternative approach for HPC systems. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Piscataway, NJ, USA, pp. 38:1–38:12 (2016)

    Google Scholar 

  22. Nocedal, J., Byrd, R.H., Lu, P., Zhu, C.: L-BFGS-B: fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. http://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-cores/

Download references

Acknowledgment

The research has received funding from European Commission under H2020-MSCA-RISE NASDAC project (grant agreement no. 691184) FP7 Mont-Blanc and Mont-Blanc 2 (grant agreements no. 288777 and 610402), H2020-FET Mont-Blanc 3 (grant agreement 671697).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossella Arcucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arcucci, R., Basciano, D., Cilardo, A., D’Amore, L., Mantovani, F. (2018). Energy Analysis of a 4D Variational Data Assimilation Algorithm and Evaluation on ARM-Based HPC Systems. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10778. Springer, Cham. https://doi.org/10.1007/978-3-319-78054-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78054-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78053-5

  • Online ISBN: 978-3-319-78054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics