Skip to main content

Sex-Related Aspects of Biomarkers in Cardiac Disease

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1065))

Abstract

Biomarkers play an important role in the clinical management of cardiac care. In particular, cardiac troponins (cTn) and natriuretic peptides are the cornerstones for the diagnosis of acute myocardial infarction (AMI) and for the diagnosis of heart failure (HF), respectively. Current guidelines do not make a distinction between women and men. However, the commonly used “one size fits all” algorithms are topic of debate to improve assessment of prognosis, particularly in women. Due to the high-sensitivity assays (hs-cTn), lower cTn levels (and 99th percentile upper reference limits) were observed in women as compared with men. Sex-specific diagnostic thresholds may improve the diagnosis of AMI in women, though clinical relevance remains controversial and more trials are needed. Also other diagnostic aspects are under investigation, like combined biomarkers approach and rapid measurement strategies. For the natriuretic peptides, previous studies observed higher concentrations in women than in men, especially in premenopausal women who might benefit from the cardioprotective actions. Contrary to hs-cTn, natriuretic peptides are particularly incorporated in the ruling-out algorithms for the diagnosis of HF and not ruling-in. Clinical relevance of sex differences here seems marginal, as clinical research has shown that negative predictive values for ruling-out HF were hardly effected when applying a universal diagnostic threshold that is independent from sex or other risk factors. Apart from the diagnostic issues of AMI in women, we believe that in the future most sex-specific benefits of cardiac biomarkers can be obtained in patient follow-up (guiding therapy) and prognostic applications, fitting modern ideas on preventive and personalized medicine.

Biomarkers in Cardiac DiseaseArt work by Piet Michiels, Leuven, Belgium

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abbas NA, John RI, Webb MC, et al. Cardiac troponins and renal function in nondialysis patients with chronic kidney disease. Clin Chem. 2005;51:2059–66.

    Article  CAS  PubMed  Google Scholar 

  2. Alpert JS, Thygesen K, Antman E, Bassand JP. Myocardial infarction redefined--a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol. 2000;36:959–69.

    Article  CAS  PubMed  Google Scholar 

  3. Anwaruddin S, Lloyd-Jones DM, Baggish A, et al. Renal function, congestive heart failure, and amino-terminal pro-brain natriuretic peptide measurement: results from the ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) Study. J Am Coll Cardiol. 2006;47:91–7.

    Article  CAS  PubMed  Google Scholar 

  4. Apple FS, Collinson PO, Biomarkers ITFoCAoC. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin Chem. 2012a;58:54–61.

    Article  CAS  PubMed  Google Scholar 

  5. Apple FS, Ler R, Murakami MM. Determination of 19 cardiac troponin I and T assay 99th percentile values from a common presumably healthy population. Clin Chem. 2012b;58:1574–81.

    Article  CAS  PubMed  Google Scholar 

  6. Apple FS, Panteghini M, Ravkilde J, et al. Quality specifications for B-type natriuretic peptide assays. Clin Chem. 2005;51:486–93.

    Article  CAS  PubMed  Google Scholar 

  7. Apple FS, Sandoval Y, Jaffe AS, Ordonez-Llanos J, Bio-Markers ITFoCAoC. Cardiac troponin assays: guide to understanding analytical characteristics and their impact on clinical care. Clin Chem. 2017;63:73–81.

    Article  CAS  PubMed  Google Scholar 

  8. Apple FS, Wu AH, Jaffe AS, et al. National Academy of Clinical Biochemistry and IFCC Committee for Standardization of Markers of Cardiac Damage Laboratory Medicine practice guidelines: analytical issues for biomarkers of heart failure. Circulation. 2007;116:e95–8.

    Article  CAS  PubMed  Google Scholar 

  9. Balmelli C, Meune C, Twerenbold R, et al. Comparison of the performances of cardiac troponins, including sensitive assays, and copeptin in the diagnostic of acute myocardial infarction and long-term prognosis between women and men. Am Heart J. 2013;166:30–7.

    Article  CAS  PubMed  Google Scholar 

  10. Bayes-Genis A, Lupon J, Jaffe AS. Can natriuretic peptides be used to guide therapy? EJIFCC. 2016;27:208–16.

    PubMed  PubMed Central  Google Scholar 

  11. Blankenberg S, Salomaa V, Makarova N, et al. Troponin I and cardiovascular risk prediction in the general population: the BiomarCaRE consortium. Eur Heart J. 2016;37:2428–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brunner-La Rocca HP, Eurlings L, Richards AM, et al. Which heart failure patients profit from natriuretic peptide guided therapy? a meta-analysis from individual patient data of randomized trials. Eur J Heart Fail. 2015;17:1252–61.

    Article  CAS  PubMed  Google Scholar 

  13. Buiten MS, de Bie MK, Rotmans JI, et al. Serum cardiac troponin-I is superior to troponin-T as a marker for left ventricular dysfunction in clinically stable patients with end-stage renal disease. PLoS One. 2015;10:e0134245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Canobbio MM, Warnes CA, Aboulhosn J, et al. Management of pregnancy in patients with complex congenital heart disease: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2017;135:e50–87.

    Article  PubMed  Google Scholar 

  15. Canto JG, Goldberg RJ, Hand MM, et al. Symptom presentation of women with acute coronary syndromes: myth vs reality. Arch Intern Med. 2007;167:2405–13.

    Article  PubMed  Google Scholar 

  16. Cardinaels EP, Mingels AM, van Rooij T, et al. Time-dependent degradation pattern of cardiac troponin T following myocardial infarction. Clin Chem. 2013;59:1083–90.

    Article  CAS  PubMed  Google Scholar 

  17. Chang AY, Abdullah SM, Jain T, et al. Associations among androgens, estrogens, and natriuretic peptides in young women: observations from the Dallas Heart Study. J Am Coll Cardiol. 2007;49:109–16.

    Article  CAS  PubMed  Google Scholar 

  18. Clerico A, Fontana M, Vittorini S, Emdin M. The search for a pathophysiological link between gender, cardiac endocrine function, body mass regulation and cardiac mortality: proposal for a working hypothesis. Clin Chim Acta. 2009;405:1–7.

    Article  CAS  PubMed  Google Scholar 

  19. Costello-Boerrigter LC, Boerrigter G, Redfield MM, et al. Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: determinants and detection of left ventricular dysfunction. J Am Coll Cardiol. 2006;47:345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cullen L, Greenslade JH, Carlton EW, et al. Sex-specific versus overall cut points for a high sensitivity troponin I assay in predicting 1-year outcomes in emergency patients presenting with chest pain. Heart. 2016;102:120–6.

    Article  CAS  PubMed  Google Scholar 

  21. Dallmeier D, Denkinger M, Peter R, et al. Sex-specific associations of established and emerging cardiac biomarkers with all-cause mortality in older adults: the ActiFE study. Clin Chem. 2015;61:389–99.

    Article  CAS  PubMed  Google Scholar 

  22. Daniels LB, Maisel AS. Cardiovascular biomarkers and sex: the case for women. Nat Rev Cardiol. 2015;12:588–96.

    Article  CAS  PubMed  Google Scholar 

  23. de Lemos JA, Drazner MH, Omland T, et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA. 2010;304:2503–12.

    Article  PubMed  PubMed Central  Google Scholar 

  24. de Simone G, Devereux RB, Daniels SR, Meyer RA. Gender differences in left ventricular growth. Hypertension. 1995;26:979–83.

    Article  PubMed  Google Scholar 

  25. de Torbal A, Boersma E, Kors JA, et al. Incidence of recognized and unrecognized myocardial infarction in men and women aged 55 and older: the Rotterdam Study. Eur Heart J. 2006;27:729–36.

    Article  PubMed  Google Scholar 

  26. deFilippi C, Seliger SL, Kelley W, et al. Interpreting cardiac troponin results from high-sensitivity assays in chronic kidney disease without acute coronary syndrome. Clin Chem. 2012;58:1342–51.

    Article  CAS  PubMed  Google Scholar 

  27. Dockery F, Bulpitt CJ, Agarwal S, et al. Anti-androgens increase N-terminal pro-BNP levels in men with prostate cancer. Clin Endocrinol (Oxf). 2008;68:59–65.

    Article  CAS  Google Scholar 

  28. Donaldson C, Eder S, Baker C, et al. Estrogen attenuates left ventricular and cardiomyocyte hypertrophy by an estrogen receptor-dependent pathway that increases calcineurin degradation. Circ Res. 2009;104:265–75. 211p following 275

    Article  CAS  PubMed  Google Scholar 

  29. Eggers KM, Johnston N, Lind L, Venge P, Lindahl B. Cardiac troponin I levels in an elderly population from the community--The implications of sex. Clin Biochem. 2015;48:751–6.

    Article  CAS  PubMed  Google Scholar 

  30. Eggers KM, Lindahl B. Impact of sex on cardiac troponin concentrations-A critical appraisal. Clin Chem. 2017;63:1457–64.

    Article  CAS  PubMed  Google Scholar 

  31. Eggers KM, Lindahl B, Melki D, Jernberg T. Consequences of implementing a cardiac troponin assay with improved sensitivity at Swedish coronary care units: an analysis from the SWEDEHEART registry. Eur Heart J. 2016;37:2417–24.

    Article  PubMed  Google Scholar 

  32. Elsaesser A, Hamm CW. Acute coronary syndrome: the risk of being female. Circulation. 2004;109:565–7.

    Article  PubMed  Google Scholar 

  33. Felker GM, Ahmad T, Anstrom KJ, et al. Rationale and design of the GUIDE-IT study: guiding evidence based therapy using biomarker intensified treatment in heart failure. JACC Heart Fail. 2014;2:457–65.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Felker GM, Anstrom KJ, Adams KF, et al. Effect of natriuretic peptide-guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA. 2017;318:713–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Freda BJ, Tang WH, Van Lente F, Peacock WF, Francis GS. Cardiac troponins in renal insufficiency: review and clinical implications. J Am Coll Cardiol. 2002;40:2065–71.

    Article  CAS  PubMed  Google Scholar 

  36. Giannubilo SR, Pasculli A, Tidu E, et al. Relationship between maternal hemodynamics and plasma natriuretic peptide concentrations during pregnancy complicated by preeclampsia and fetal growth restriction. J Perinatol. 2017;37:484–7.

    Article  CAS  PubMed  Google Scholar 

  37. Gore MO, Seliger SL, Defilippi CR, et al. Age- and sex-dependent upper reference limits for the high-sensitivity cardiac troponin T assay. J Am Coll Cardiol. 2014;63:1441–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Royal College of Obstetricians and Gynaecologists, National Collaborating Centre for Women’s and Children’s Health. Hypertension in pregnancy: the management of hypertensive disorders during pregnancy. London: National Institute for Health and Clinical Excellence: Guidance; 2010.

    Google Scholar 

  39. Jacobs EJH, Mingels AMA, Dieijen van-Visser MP. Cardiac biomarkers in end-stage renal disease. In: Sahay M, editor. Chronic kidney disease and renal transplantation. InTech Publication; 2012. p. 147–60.

    Google Scholar 

  40. Jaffe AS, Apple FS. High-sensitivity cardiac troponin assays: isn’t it time for equality? Clin Chem. 2014;60:7–9.

    Article  CAS  PubMed  Google Scholar 

  41. Januzzi JL Jr, Camargo CA, Anwaruddin S, et al. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol. 2005;95:948–54.

    Article  CAS  PubMed  Google Scholar 

  42. Kajimoto K, Minami Y, Sato N, et al. Gender differences in anemia and survival in patients hospitalized for acute decompensated heart failure with preserved or reduced ejection fraction. Am J Cardiol. 2017;120:435–42.

    Article  PubMed  Google Scholar 

  43. Khan NA, Daskalopoulou SS, Karp I, et al. Sex differences in acute coronary syndrome symptom presentation in young patients. JAMA Intern Med. 2013;173:1863–71.

    PubMed  Google Scholar 

  44. Kimenai DM, Henry RM, van der Kallen CJ, et al. Direct comparison of clinical decision limits for cardiac troponin T and I. Heart. 2016;102:610–6.

    Article  CAS  PubMed  Google Scholar 

  45. Kimenai DM, Martens RJH, Kooman JP, et al. Troponin I and T in relation to cardiac injury detected with electrocardiography in a population-based cohort – The Maastricht Study. Sci Rep. 2017;7:6610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krauser DG, Chen AA, Tung R, et al. Neither race nor gender influences the usefulness of amino-terminal pro-brain natriuretic peptide testing in dyspneic subjects: a ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) substudy. J Card Fail. 2006;12:452–7.

    Article  CAS  PubMed  Google Scholar 

  47. Labugger R, Organ L, Collier C, Atar D, Van Eyk JE. Extensive troponin I and T modification detected in serum from patients with acute myocardial infarction. Circulation. 2000;102:1221–6.

    Article  CAS  PubMed  Google Scholar 

  48. Lam CS, Cheng S, Choong K, et al. Influence of sex and hormone status on circulating natriuretic peptides. J Am Coll Cardiol. 2011;58:618–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lew J, Sanghavi M, Ayers CR, et al. Sex-based differences in cardiometabolic biomarkers. Circulation. 2017;135:544–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luckenbill KN, Christenson RH, Jaffe AS, et al. Cross-reactivity of BNP, NT-proBNP, and proBNP in commercial BNP and NT-proBNP assays: preliminary observations from the IFCC Committee for Standardization of Markers of Cardiac Damage. Clin Chem. 2008;54:619–21.

    Article  CAS  PubMed  Google Scholar 

  51. Lyngbakken MN, Rosjo H, Holmen OL, et al. Gender, high-sensitivity troponin I, and the risk of cardiovascular events (from the Nord-Trondelag Health Study). Am J Cardiol. 2016;118:816–21.

    Article  CAS  PubMed  Google Scholar 

  52. Maffei S, Del Ry S, Prontera C, Clerico A. Increase in circulating levels of cardiac natriuretic peptides after hormone replacement therapy in postmenopausal women. Clin Sci (Lond). 2001;101:447–53.

    Article  CAS  Google Scholar 

  53. Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347:161–7.

    Article  CAS  PubMed  Google Scholar 

  54. Martens RJ, Kimenai DM, Kooman JP, et al. Estimated glomerular filtration rate and albuminuria are associated with biomarkers of cardiac injury in a population-based cohort study: The Maastricht study. Clin Chem. 2017;63:887–97.

    Article  CAS  PubMed  Google Scholar 

  55. McCullough PA, Duc P, Omland T, et al. B-type natriuretic peptide and renal function in the diagnosis of heart failure: an analysis from the Breathing Not Properly Multinational Study. Am J Kidney Dis. 2003;41:571–9.

    Article  CAS  PubMed  Google Scholar 

  56. McKie PM, Cataliotti A, Lahr BD, et al. The prognostic value of N-terminal pro-B-type natriuretic peptide for death and cardiovascular events in healthy normal and stage A/B heart failure subjects. J Am Coll Cardiol. 2010;55:2140–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meijers WC, van der Velde AR, Muller Kobold AC, et al. Variability of biomarkers in patients with chronic heart failure and healthy controls. Eur J Heart Fail. 2017;19:357–65.

    Article  CAS  PubMed  Google Scholar 

  58. Mingels A, Jacobs L, Michielsen E, et al. Reference population and marathon runner sera assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and I assays. Clin Chem. 2009;55:101–8.

    Article  CAS  PubMed  Google Scholar 

  59. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–360.

    Article  PubMed  Google Scholar 

  60. Mueller-Hennessen M, Lindahl B, Giannitsis E, et al. Diagnostic and prognostic implications using age- and gender-specific cut-offs for high-sensitivity cardiac troponin T – Sub-analysis from the TRAPID-AMI study. Int J Cardiol. 2016;209:26–33.

    Article  PubMed  Google Scholar 

  61. Neeland IJ, Drazner MH, Berry JD, et al. Biomarkers of chronic cardiac injury and hemodynamic stress identify a malignant phenotype of left ventricular hypertrophy in the general population. J Am Coll Cardiol. 2013;61:187–95.

    Article  CAS  PubMed  Google Scholar 

  62. Oliver JM, Gallego P, Gonzalez AE, et al. Impact of age and sex on survival and causes of death in adults with congenital heart disease. Int J Cardiol. 2017;245:119–24.

    Article  PubMed  Google Scholar 

  63. Omland T, de Lemos JA, Holmen OL, et al. Impact of sex on the prognostic value of high-sensitivity cardiac troponin I in the general population: the HUNT study. Clin Chem. 2015;61:646–56.

    Article  CAS  PubMed  Google Scholar 

  64. Ouwerkerk W, Voors AA, Zwinderman AH. Factors influencing the predictive power of models for predicting mortality and/or heart failure hospitalization in patients with heart failure. JACC Heart Fail. 2014;2:429–36.

    Article  PubMed  Google Scholar 

  65. Pagidipati NJ, Peterson ED. Acute coronary syndromes in women and men. Nat Rev Cardiol. 2016;13:471–80.

    Article  PubMed  Google Scholar 

  66. Pfisterer M, Buser P, Rickli H, et al. BNP-guided vs symptom-guided heart failure therapy: the Trial of Intensified vs Standard Medical Therapy in Elderly Patients With Congestive Heart Failure (TIME-CHF) randomized trial. JAMA. 2009;301:383–92.

    Article  CAS  PubMed  Google Scholar 

  67. Piro M, Della Bona R, Abbate A, Biasucci LM, Crea F. Sex-related differences in myocardial remodeling. J Am Coll Cardiol. 2010;55:1057–65.

    Article  CAS  PubMed  Google Scholar 

  68. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200.

    Article  PubMed  Google Scholar 

  69. Rahimi K, Bennett D, Conrad N, et al. Risk prediction in patients with heart failure: a systematic review and analysis. JACC Heart Fail. 2014;2:440–6.

    Article  PubMed  Google Scholar 

  70. Raymond I, Groenning BA, Hildebrandt PR, et al. The influence of age, sex and other variables on the plasma level of N-terminal pro brain natriuretic peptide in a large sample of the general population. Heart. 2003;89:745–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Redfield MM, Rodeheffer RJ, Jacobsen SJ, et al. Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coll Cardiol. 2002;40:976–82.

    Article  CAS  PubMed  Google Scholar 

  72. Roffi M, Patrono C, Collet JP, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:267–315.

    Article  CAS  PubMed  Google Scholar 

  73. Rubini Gimenez M, Twerenbold R, Boeddinghaus J, et al. Clinical effect of sex-specific cutoff values of high-sensitivity cardiac troponin T in suspected myocardial infarction. JAMA Cardiol. 2016;1:912–20.

    Article  PubMed  Google Scholar 

  74. Saenger AK, Dalenberg DA, Bryant SC, Grebe SK, Jaffe AS. Pediatric brain natriuretic peptide concentrations vary with age and sex and appear to be modulated by testosterone. Clin Chem. 2009;55:1869–75.

    Article  CAS  PubMed  Google Scholar 

  75. Saenger AK, Rodriguez-Fraga O, Ler R, et al. Specificity of B-type natriuretic peptide assays: cross-reactivity with different BNP, NT-proBNP, and proBNP peptides. Clin Chem. 2017;63:351–8.

    Article  CAS  PubMed  Google Scholar 

  76. Sandoval Y, Smith SW, Schulz KM, et al. Diagnosis of type 1 and type 2 myocardial infarction using a high-sensitivity cardiac troponin I assay with sex-specific 99th percentiles based on the third universal definition of myocardial infarction classification system. Clin Chem. 2015;61:657–63.

    Article  CAS  PubMed  Google Scholar 

  77. Saunders JT, Nambi V, de Lemos JA, et al. Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the Atherosclerosis Risk in Communities Study. Circulation. 2011;123:1367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Savarese G, Trimarco B, Dellegrottaglie S, et al. Natriuretic peptide-guided therapy in chronic heart failure: a meta-analysis of 2686 patients in 12 randomized trials. PLoS One. 2013;8:e58287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Scheven L, de Jong PE, Hillege HL, et al. High-sensitive troponin T and N-terminal pro-B type natriuretic peptide are associated with cardiovascular events despite the cross-sectional association with albuminuria and glomerular filtration rate. Eur Heart J. 2012;33:2272–81.

    Article  CAS  PubMed  Google Scholar 

  80. Schofer N, Brunner FJ, Schluter M, et al. Gender-specific diagnostic performance of a new high-sensitivity cardiac troponin I assay for detection of acute myocardial infarction. Eur Heart J Acute Cardiovasc Care. 2017;6:60–8.

    Article  PubMed  Google Scholar 

  81. Shah AS, Griffiths M, Lee KK, et al. High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: prospective cohort study. BMJ. 2015;350:g7873.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sze J, Mooney J, Barzi F, Hillis GS, Chow CK. Cardiac troponin and its relationship to cardiovascular outcomes in community populations – a systematic review and meta-analysis. Heart Lung Circ. 2016;25:217–28.

    Article  PubMed  Google Scholar 

  83. Tanous D, Siu SC, Mason J, et al. B-type natriuretic peptide in pregnant women with heart disease. J Am Coll Cardiol. 2010;56:1247–53.

    Article  CAS  PubMed  Google Scholar 

  84. Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. Eur Heart J. 2012;33:2551–67.

    Article  PubMed  Google Scholar 

  85. Trambas C, Pickering JW, Than M, et al. Impact of high-sensitivity troponin I testing with sex-specific cutoffs on the diagnosis of acute myocardial infarction. Clin Chem. 2016;62:831–8.

    Article  CAS  PubMed  Google Scholar 

  86. Twerenbold R, Boeddinghaus J, Nestelberger T, et al. Clinical use of high-sensitivity cardiac troponin in patients with suspected myocardial infarction. J Am Coll Cardiol. 2017;70:996–1012.

    Article  CAS  PubMed  Google Scholar 

  87. Wallace TW, Abdullah SM, Drazner MH, et al. Prevalence and determinants of troponin T elevation in the general population. Circulation. 2006;113:1958–65.

    Article  CAS  PubMed  Google Scholar 

  88. Westerman S, Wenger NK. Women and heart disease, the underrecognized burden: sex differences, biases, and unmet clinical and research challenges. Clin Sci (Lond). 2016;130:551–63.

    Article  Google Scholar 

  89. Wildi K, Gimenez MR, Twerenbold R, et al. Misdiagnosis of myocardial infarction related to limitations of the current regulatory approach to define clinical decision values for cardiac troponin. Circulation. 2015;131:2032–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Willeit P, Welsh P, Evans JDW, et al. High-sensitivity cardiac troponin concentration and risk of first-ever cardiovascular outcomes in 154,052 participants. J Am Coll Cardiol. 2017;70:558–68.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wu AH, Jaffe AS, Apple FS, et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines: use of cardiac troponin and B-type natriuretic peptide or N-terminal proB-type natriuretic peptide for etiologies other than acute coronary syndromes and heart failure. Clin Chem. 2007;53:2086–96.

    Article  CAS  PubMed  Google Scholar 

  92. Wu AH, Smith A. Biological variation of the natriuretic peptides and their role in monitoring patients with heart failure. Eur J Heart Fail. 2004;6:355–8.

    Article  CAS  PubMed  Google Scholar 

  93. Wu AH, Smith A, Wieczorek S, et al. Biological variation for N-terminal pro- and B-type natriuretic peptides and implications for therapeutic monitoring of patients with congestive heart failure. Am J Cardiol. 2003;92:628–31.

    Article  CAS  PubMed  Google Scholar 

  94. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017;23:628–51.

    Google Scholar 

  95. Yeo KT, Wu AH, Apple FS, et al. Multicenter evaluation of the Roche NT-proBNP assay and comparison to the Biosite Triage BNP assay. Clin Chim Acta. 2003;338:107–15.

    Article  CAS  PubMed  Google Scholar 

  96. Zeller T, Tunstall-Pedoe H, Saarela O, et al. High population prevalence of cardiac troponin I measured by a high-sensitivity assay and cardiovascular risk estimation: the MORGAM Biomarker Project Scottish Cohort. Eur Heart J. 2014;35:271–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma M. A. Mingels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mingels, A.M.A., Kimenai, D.M. (2018). Sex-Related Aspects of Biomarkers in Cardiac Disease. In: Kerkhof, P., Miller, V. (eds) Sex-Specific Analysis of Cardiovascular Function. Advances in Experimental Medicine and Biology, vol 1065. Springer, Cham. https://doi.org/10.1007/978-3-319-77932-4_33

Download citation

Publish with us

Policies and ethics