Skip to main content

Sex Differences in Autonomic Response to Exercise Testing in Patients with Brugada Syndrome

  • Chapter
  • First Online:
Book cover Sex-Specific Analysis of Cardiovascular Function

Abstract

Introduction: Cardiac events in patients with Brugada syndrome (BS) typically occur at rest and mainly during sleep, suggesting that changes in autonomic modulation play an important role in the arrhythmogenesis of the disease. Moreover, sex differences in clinical manifestations of BS have been reported, identifying male patients with worse prognosis. The aim of our work was to assess and compare, according to sex, autonomic response to exercise in a clinical series including 105 BS patients.

Method: Standard 12-lead electrocardiogram recordings were collected during a physical stress test divided into four phases: warm-up, incremental exercise, active recovery, and passive recovery. Spectral non-stationary heart rate variability indicators were extracted by means of a smoothed pseudo Wigner-Ville distribution approach that adapts frequency bands to respiratory information. These indicators were then averaged in non-overlapped windows of 1 min for each patient to compare groups at each minute of the physical stress test.

Results: From the last minute of warm-up and until the third minute of incremental exercise, asymptomatic male patients presented significantly greater low-frequency (LF) values (\( \overline{{\mathrm{LF}}^{WU2}} \): p = 0.015;\( \overline{{\mathrm{LF}}^{EX1}} \): p = 0.024; \( \overline{{\mathrm{LF}}^{EX2}} \): p = 0.011; \( \overline{{\mathrm{LF}}^{EX3}} \): p = 0.002) than asymptomatic females. Conversely, asymptomatic women showed increased vagal modulation during the first minutes of incremental exercise (\( \overline{{\mathrm{HF}}^{EX1}} \): p = 0.031; \( \overline{{\mathrm{HF}}^{EX2}} \): p = 0.001). However, no significant differences were observed between symptomatic male and female patients.

Conclusion: As previously reported in healthy subjects, enhanced parasympathetic and decreased sympathetic tones appear to be not only greater in women but also defensive during cardiac stress. Based on the results, asymptomatic patients presented same-sex tendencies. However, we observed that symptomatic males developed a more female-like autonomic modulation, probably related to a more protective autonomic response to exercise. These results could be a step forward toward the understanding of the autonomic function in BS along with a potential impact on risk stratification.

Artwork by Piet Michiels, Leuven, Belgium

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome: a multicenter report. J Am Coll Cardiol. 1992;20(6):1391–6.

    Article  CAS  PubMed  Google Scholar 

  2. Brugada J, Brugada R, Brugada P. Right bundle-branch block and ST-segment elevation in leads V1 through V3 : a marker for sudden death in patients without demonstrable structural heart disease. Circulation. 1998;97(5):457–60.

    Article  CAS  PubMed  Google Scholar 

  3. Antzelevitch C. Heart Rhythm Society; European Heart Rhythm Association. Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation. 2005;111(5):659–70.

    Article  Google Scholar 

  4. Benito B, Sarkozy A, Mont L, Henkens S, Berruezo A, Tamborero D, et al. Gender differences in clinical manifestations of Brugada syndrome. J Am Coll Cardiol. 2008;52(19):1567–73.

    Article  PubMed  Google Scholar 

  5. Kies P, Wichter T, Schäfers M, Paul M, Schäfers KP, Eckardt L, et al. Abnormal myocardial presynaptic norepinephrine recycling in patients with Brugada syndrome. Circulation. 2004;110(19):3017–22.

    Article  CAS  PubMed  Google Scholar 

  6. Matsuo K, Kurita T, Inagaki M, Kakishita M, Aihara N, Shimizu W, et al. The circadian pattern of the development of ventricular fibrillation in patients with Brugada syndrome. Eur Heart J. 1999;20(6):465–70.

    Article  CAS  PubMed  Google Scholar 

  7. Paul M, Meyborg M, Boknik P, Gergs U, Schmitz W, Breithardt G, et al. Autonomic dysfunction in patients with Brugada syndrome: further biochemical evidence of altered signaling pathways. Pacing Clin Electrophysiol. 2011;34(9):1147–53.

    Article  PubMed  Google Scholar 

  8. Wichter T, Matheja P, Eckardt L, Kies P, Schäfers K, Schulze-Bahr E, et al. Cardiac autonomic dysfunction in Brugada syndrome. Circulation. 2002;105(6):702–6.

    Article  PubMed  Google Scholar 

  9. Imai K, Sato H, Hori M, Kusuoka H, Ozaki H, Yokoyama H, et al. Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J Am Coll Cardiol. 1994;24(6):1529–35.

    Article  CAS  PubMed  Google Scholar 

  10. Savin WM, Davidson DM, Haskell WL. Autonomic contribution to heart rate recovery from exercise in humans. J Appl Physiol. 1982;53(6):1572–5.

    Article  CAS  PubMed  Google Scholar 

  11. Camm AJ, Malik M, Bigger JT, Breithardt G, Cerutti S, Cohen RJ, et al. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93(5):1043–65.

    Article  Google Scholar 

  12. Sala R, Malacarne M, Solaro N, Pagani M, Lucini D. A composite autonomic index as unitary metric for heart rate variability: a proof of concept. Eur J Clin Investig. 2017;47(3):241–9.

    Article  Google Scholar 

  13. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation [Internet]. 1991;84(2):482–92. Available from: http://circ.ahajournals.org/content/84/2/482.abstract

    Article  CAS  Google Scholar 

  14. Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, et al. ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J Am Coll Cardiol. 2002;40(8):1531–40.

    Article  PubMed  Google Scholar 

  15. Fox SM 3rd, Haskell WL. Physical activity and the prevention of coronary heart disease. Bull N Y Acad Med. 1968;44(8):950–65.

    PubMed  PubMed Central  Google Scholar 

  16. Dumont J, Hernandez AI, Carrault G. Improving ECG beats delineation with an evolutionary optimization process. IEEE Trans Biomed Eng. 2010;57(3):607–15.

    Article  Google Scholar 

  17. Orini M, Mainardi LT, Gil E, Laguna P, Bailón R. Dynamic assessment of spontaneous baroreflex sensitivity by means of time-frequency analysis using either RR or pulse interval variability. In: 2010 Annual international conference of the IEEE engineering in medicine and biology. 2010. pp 1630–1633.

    Google Scholar 

  18. Hlawatsch F, Boudreaux-Bartels GF. Linear and quadratic time-frequency signal representations. IEEE Signal Process Mag. 1992;9(2):21–67.

    Article  Google Scholar 

  19. Costa AH, Boudreau-Bartels GF. Design of time-frequency representations using a multiform, tiltable exponential kernel. IEEE Trans Signal Process. 1995;43(10):2283–301.

    Article  Google Scholar 

  20. Bailón R, Laguna P, Mainardi L, Sornmo L. Analysis of heart rate variability using time-varying frequency bands based on respiratory frequency. In: Engineering in medicine and biology society, 2007 EMBS 2007 29th Annual international conference of the IEEE. 2007. pp 6674–6677.

    Google Scholar 

  21. Moody GB, Mark RG, Bump MA, Weinstein JS, Berman AD, Mietus JE, et al. Clinical validation of the ECG-derived respiration (EDR) technique. Comput Cardiol. 1986;13:507–10.

    Google Scholar 

  22. Kappus RM, Ranadive SM, Yan H, Lane-Cordova AD, Cook MD, Sun P, et al. Sex differences in autonomic function following maximal exercise. Biol Sex Differ [Internet]. 2015;6(1):28. Available from: http://www.bsd-journal.com/content/6/1/28

    Article  Google Scholar 

  23. Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci Biobehav Rev. 2016;64:288–310.

    Article  PubMed  Google Scholar 

  24. Breuer HW, Skyschally A, Schulz R, Martin C, Wehr M, Heusch G. Heart rate variability and circulating catecholamine concentrations during steady state exercise in healthy volunteers. Heart [Internet]. 1993;70(2):144–9. Available from: http://heart.bmj.com/cgi/doi/10.1136/hrt.70.2.144

    Article  CAS  Google Scholar 

  25. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2016 update a report from the American Heart Association. Circulation. 2016;133:e38–48.

    Article  Google Scholar 

  26. Minson CT, Halliwill JR, Young TM, Joyner MJ. Influence of the menstrual cycle on sympathetic activity, baroreflex sensitivity, and vascular transduction in young women. Circulation. 2000;101(8):862.

    Article  CAS  PubMed  Google Scholar 

  27. Saleh TM, Connell BJ. Estrogen-induced autonomic effects are mediated by NMDA and GABAA receptors in the parabrachial nucleus. Brain Res. 2003;973(2):161–70.

    Article  CAS  PubMed  Google Scholar 

  28. Mohamed MK, El-Mas MM. Abdel-Rahman AA. Estrogen enhancement of baroreflex sensitivity is centrally mediated. Am J Phys. 1999;276(4 Pt 2):R1030–7.

    CAS  Google Scholar 

  29. Benjamin IJ, Christians E. Exercise, estrogen, and ischemic cardioprotection by heat shock protein 70. Circ Res. 2002;90(8):833–5.

    Article  CAS  PubMed  Google Scholar 

  30. Di Diego JM, Cordeiro JM, Goodrow RJ, Fish JM, Zygmunt AC, Pérez GJ, et al. Ionic and cellular basis for the predominance of the Brugada syndrome phenotype in males. Circulation. 2002;106(15):2004–11.

    Article  PubMed  Google Scholar 

  31. Antzelevitch C. Androgens and male predominance of the Brugada syndrome phenotype. Pacing Clin Electrophysiol. 2003;26(7p1):1429–31.

    Article  PubMed  Google Scholar 

  32. Shimizu W, Matsuo K, Kokubo Y, Satomi K, Kurita T, Noda T, et al. Sex hormone and gender difference – role of testosterone on male predominance in Brugada syndrome. J Cardiovasc Electrophysiol. 2007;18(4):415–21.

    Article  PubMed  Google Scholar 

  33. Song M, Helguera G, Eghbali M, Zhu N, Zarei MM, Olcese R, et al. Remodeling of Kv4.3 Potassium Channel gene expression under the control of sex hormones. J Biol Chem. 2001;276(34):31883–90.

    Article  CAS  PubMed  Google Scholar 

  34. Bai CX, Kurokawa J, Tamagawa M, Nakaya H, Furukawa T. Nontranscriptional regulation of cardiac repolarization currents by testosterone. Circulation. 2005;112(12):1701–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginie Le Rolle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calvo, M. et al. (2018). Sex Differences in Autonomic Response to Exercise Testing in Patients with Brugada Syndrome. In: Kerkhof, P., Miller, V. (eds) Sex-Specific Analysis of Cardiovascular Function. Advances in Experimental Medicine and Biology, vol 1065. Springer, Cham. https://doi.org/10.1007/978-3-319-77932-4_12

Download citation

Publish with us

Policies and ethics