Skip to main content

Adaptation to Climate Change Through Adaptive Crop Management

  • Chapter
  • First Online:
Sustainable Solutions for Food Security

Abstract

In order to meet the growing needs of the global food system, whilst at the same time mitigating the effects of climate change and other production limiting factors and reducing negative environmental externalities, maize, wheat and rice agri-food systems will be required to sustainably intensify production. In the irrigated systems of developing countries, significant scope exists for increasing water use efficiency through new soil, water and fertiliser management approaches (such as Conservation Agriculture, Direct Seeding, Alternate Wetting and Drying, Site Specific Nutrient Management and Nutrient Expert) and crop diversification. In addition to the development of weather agro-advisory services and weather index insurance, the options available in rain-fed systems differ markedly from those available in irrigated systems, namely, to optimise every drop of available rainfall or to avoid drought stress situations. Whilst breeding for heat tolerance and diversified cropping systems are likely to be the principal short-term responses to increased mean global temperatures and extreme heat events, changes over the longer term are predicted to be quite dramatic, especially with regard to a productive expansion of temperate crops towards the poles. Whilst significant opportunities exist to ameliorate the effects of climate change, these opportunities generally involve risk. In developed countries, the private sector (seed, fertiliser, pesticide, irrigation, credit and insurance suppliers) is generally at hand to advise farmers how to address the challenges posed by climate change. Conversely, in most developing countries, there are few sources of advice and support for smallholder farmers. This situation leaves many smallholder farmers in developing countries without the advice and support that they desperately need. Ultimately, the most vulnerable farmers and communities, namely, smallholder subsistence and market oriented farmers in marginal environments, are those who face the most extreme climate change-related challenges at the same time as being the least able to adapt. Whilst international agricultural research centres (CGIAR), advanced research and development-focused centres of developed countries, and both local and international NGOs strive to both develop and translate evolving crop management approaches; the dissemination of climate smart agricultural practices is extremely slow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AGRA. (2014). Africa agriculture status report: Climate change and smallholder agriculture in sub-Saharan Africa (No. 2). Nairobi: Alliance for a Green Revolution in Africa, AGRA.

    Google Scholar 

  • Andersson, J. A., & D’Souza, S. (2014). From adoption claims to understanding farmers and contexts: A literature review of conservation agriculture (CA) adoption among smallholder farmers in southern Africa. Agriculture, Ecosystems & Environment, 187, 116–132.

    Article  Google Scholar 

  • Babel, M. S., & Wahid, S. W. (2008). Freshwater under threat in South Asia. UNEP Report. Nairobi: United Nations Environment Programme (UNEP). ISBN 978-92-807-2949-8. 29 pp.

    Google Scholar 

  • Balwinder-Singh, Gaydon, D. S., Humphreys, E., & Eberbach, P. L. (2011). Evaluating the performance of APSIM for irrigated wheat in Punjab, India. Field Crops Research, 124, 1–13.

    Article  Google Scholar 

  • Balwinder-Singh, Humphreys, E., Gaydonca, D. S., & Yadavb, S. (2015). Options for increasing the productivity of the rice–wheat system of north west India while reducing groundwater depletion. Part 2. Is conservation agriculture the answer? Field Crops Research, 173(2015), 81–94.

    Article  Google Scholar 

  • Baudron, F., Thierfelder, C., Nyagumbo, I., & Gérard, B. (2015). Where to target conservation agriculture for African smallholders? How to overcome challenges associated with its implementation? Experience from eastern and southern Africa. Environments, 2(3), 338–357.

    Article  Google Scholar 

  • Belder, P., Bouman, B. A. M., Cabangon, R. J., Guoan, L., Quilang, E. J. P., Yuanhua, L., Spiertz, J. H. J., & Tuong, T. P. (2004). Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management, 65, 193–210.

    Article  Google Scholar 

  • Belder, P., Bouman, B. A. M., & Spiertz, J. H. J. (2007). Exploring options for water savings in lowland rice using a modelling approach. Agricultural Systems, 92, 91–114.

    Article  Google Scholar 

  • Bele, M. Y., Sonwa, D. J., & Tiani, A. M. (2014). Local communities’ vulnerability to climate change and adaptation strategies in Bukavu in DR Congo. Journal of Environment & Development, 23(3), 331–357.

    Article  Google Scholar 

  • Biazin, B., Sterk, G., Temesgen, M., Abdulkedir, A., & Stroosnijder, L. (2012). Rainwater harvesting and management in rain-fed agricultural systems in sub-Saharan Africa—A review. Physics and Chemistry of the Earth, 47–48, 139–151.

    Article  Google Scholar 

  • Bouman, B. A. M., Peng, S., Castaneda, A. R., & Visperas, R. M. (2005). Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management, 74, 87–105.

    Article  Google Scholar 

  • Bouman, B. A. M., Lampayan, R. M., & Tuong, T. P. (2007). Water management in irrigated rice: Coping with water scarcity (p. 53). Manila: International Rice Research Institute.

    Google Scholar 

  • Brooks, S. (2014). Enabling adaptation? Lessons from the new ‘Green Revolution’ in Malawi and Kenya. Climatic Change, 122, 15–26.

    Article  Google Scholar 

  • Bryan, E., Deressa, T. T., Gbetibouo, G. A., & Ringler, C. (2009). Adaptation to climate change in Ethiopia and South Africa: Options and constraints. Environmental Science & Policy, 12, 413–426.

    Article  Google Scholar 

  • Bryan, E., Ringler, C., Okoba, B., Roncoli, C., Silvestri, S., & Herrero, M. (2013). Adapting agriculture to climate change in Kenya: Household strategies and determinants. Journal of Environmental Management, 114, 26–35.

    Article  Google Scholar 

  • Bueno, C. S., Bucourt, M., Kobayashi, N., In ubushi, K., & Lafarge, T. (2010). Water productivity of contrasting rice genotypes grown under water-saving conditions in the tropics and investigation of morphological traits for adaptation. Agricultural Water Management, 98, 241–250.

    Article  Google Scholar 

  • Burke, M. B., Lobell, D. B., & Guarino, L. (2009). Shifts in African crop climates by 2050, and the implications for crop improvements and genetic resources conservation. Global Environmental Change, 19, 317–325.

    Article  Google Scholar 

  • Cabangon, R. J., Lu, G., Tuong, T. P., Bouman, B. A. M., Feng, Y., & Zichuan, Z. (2003). Irrigation management effects on yield and water productivity of inbred and aerobic rice varieties in Kaefeng. In Proc. of the First International Yellow River Forum on River Basin Management (Vol. 2, pp. 65–76). Zhengzhou, Henan: The Yellow River Conservancy Publishing House.

    Google Scholar 

  • Cairns, J. E., Hellin, J., Sonder, K., Araus, J. L., MacRobert, J. F., Thierfelder, C., & Prasanna, B. M. (2013). Adapting maize production to climate change in sub-Saharan Africa. Food Security, 5, 345–360. https://doi.org/10.1007/s12571-013-0256-x.

    Article  Google Scholar 

  • CCAFS. (2014). Climate-smart villages: A community approach to sustainable agricultural development. Retrieved from https://ccafs.cgiar.org/publications/climate-smart-villages-community-approach-sustainable-agricultural-development.

  • Chahal, G. B. S., Sood, A., Jalota, S. K., Choudhury, B. U., & Sharma, P. K. (2007). Yield, evapotranspiration and water productivity of rice (Oryza sativa L.)–wheat (Triticum aestivum L.) system in Punjab-India as influenced by transplanting date of rice and weather parameters. Agricultural Water Management, 88, 14–27.

    Article  Google Scholar 

  • Challinor, A. J., Simelton, E. S., Fraser, E. D. G., Hemming, D., & Collins, M. (2010). Increased crop failure due to climate change: Assessing adaptation options using models and socio-economic data for wheat in China. Environmental Research Letters, 5(2010), 034012 (8pp). https://doi.org/10.1088/1748-9326/5/3/034012.

    Article  Google Scholar 

  • Critchley, W., & Gowing, J. (Eds.). (2012). Water harvesting in Sub-Saharan Africa. London: Routledge.

    Google Scholar 

  • Dawe, D. (2005). Increasing water productivity in rice-based systems in Asia—Past trends, current problems, and future prospects. Plant Production Science, 8, 221–230. https://doi.org/10.1626/pps.8.221.

    Article  Google Scholar 

  • Dawe, D., Dobermann, A., Witt, C., Abdulrachman, S., Gines, H. C., Nagarajan, R., Satawathananont, S., Son, T. T., Tan, P. S., & Wang, G. H. (2004). Nutrient management in the rice soils of Asia and the potential of site-specific nutrient management. In A. Dobermann, C. Witt, & D. Dawe (Eds.), Increasing productivity of intensive rice systems through site-specific nutrient management (pp. 337–358). Enfield, NH; Los Baños: Science Publishers; International Rice Research Institute.

    Google Scholar 

  • Dendooven, L., Patiño-Zúñiga, L., Verhulst, N., Luna-Guido, M., Marsch, R., & Govaerts, B. (2012). Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of Mexico. Agriculture, Ecosystems and Environment, 152, 50–58.

    Article  Google Scholar 

  • Derpsch, R., Lange, D., Birbaumer, G., & Moriya, K. (2016). Why do medium-and large-scale farmers succeed practicing CA and small-scale farmers often do not? – Experiences from Paraguay. International Journal of Agricultural Sustainability, 14(3), 269–281.

    Article  Google Scholar 

  • Dobermann, A., Witt, C., Dawe, D., Abdulrachman, S., Gines, H. C., Nagarajan, R., Satawathananont, S., Son, T. T., Tan, P. S., Wang, G. H., Chien, N. V., Thoa, V. T. K., Phung, C. V., Stalin, P., Muthukrishnan, P., Ravi, V., Babu, M., Chatuporn, S., Sookthongsa, J., Sun, Q., Fu, R., Simbahan, G. C., & Adviento, M. A. A. (2002). Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research, 74, 37–66.

    Article  Google Scholar 

  • Dobermann, A., Abdulrachman, S., Gines, H. C., Nagarajan, R., Satawathananont, S., Son, T. T., Tan, P. S., Wang, G. H., Simbahan, G. C., Adviento, M. A. A., & Witt, C. (2004). Agronomic performance of site-specific nutrient management in intensive rice-cropping systems of Asia. In A. Dobermann, C. Witt, & D. Dawe (Eds.), Increasing productivity of intensive rice systems through site-specific nutrient management (pp. 307–336). Enfield, NH; Los Baños: Science Publishers; International Rice Research Institute.

    Google Scholar 

  • Doll, P., & Siebert, S. (2002). Global modeling of irrigation water requirements. Water Resources Research, 38, 1–10. https://doi.org/10.1029/2001WR000355.

    Article  Google Scholar 

  • ETC. (2016). Software vs. Hardware vs. Nowhere: Deere & Co. is becoming ‘Monsanto in a Box. Val David, QC: ETC Group.

    Google Scholar 

  • FAO. (2008). FAO statistical yearbook. Rome: The Food and Agriculture Organization. Retrieved from http://faostat.fao.org.

    Google Scholar 

  • FAO. (2011). What is conservation agriculture? FAO conservation agriculture. Rome: The Food and Agriculture Organization. Retrieved from http://www.fao.org/ag/ca/1a.html.

    Google Scholar 

  • Farooq, M., Siddique, K. H. M., Rehman, H., Aziz, T., Dong-Jin, L., & Wahid, A. (2011). Rice direct seeding: Experiences, challenges and opportunities. Soil and Tillage Research, 111, 87–98.

    Article  Google Scholar 

  • Fischer, R. A., Santiveri, F., & Vidal, I. R. (2002). Crop rotation, tillage and crop residue management for wheat and maize in the sub-humid tropical highlands: I. Wheat and legume performance. Field Crops Research, 79, 107–122.

    Article  Google Scholar 

  • Fischer, E. M., Seneviratne, S., & Schr, C. (2007). Contribution of land-atmosphere coupling to recent European summer heat waves. Geophysical Research Letters, 34, 606–707.

    Article  Google Scholar 

  • Fischer, R. A., Byerlee, D., & Edmeades, G. O. (2014). Crop yields and global food security: Will yield increase continue to feed the world? Canberra, ACT: Australian Centre for International Agricultural Research. Retrieved from http://aciar.gov.au/publication/mn158.

    Google Scholar 

  • Fosu-Mensah, B. Y., Vlek, P. L. G., & MacCarthy, D. S. (2012). Farmers’ perception and adaptation to climate change: A case study of Sekyedumase District in Ghana. Environment, Development and Sustainability, 14, 495–505.

    Article  Google Scholar 

  • Gangwar, B., & Singh, A. K. (2011). Efficient alternative cropping systems (p. 339). Meerut: Project Directorate for Farming Systems Research, Modipuram.

    Google Scholar 

  • Gathala, M. K., Kumar, V., Sharma, P. C., Saharawat, Y. S., Jat, H. S., Singh, M., Kumar, A., Jat, M. L., Humphreys, E., Sharma, D. K., Sharma, S., & Ladha, J. K. (2014). Optimizing intensive cereal-based cropping systems addressing current and future drivers of agricultural change in the Northwestern Indo-Gangetic Plains of India. Agriculture, Ecosystems and Environment, 187, 33–46.

    Article  Google Scholar 

  • Giller, K. E., Witter, E., Corbeels, M., & Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: The heretic’s view. Field Crops Research, 114, 23–34.

    Article  Google Scholar 

  • Giller, K. E., Corbeels, M., Nyamangara, J., Triomphe, B., Affholder, F., Scopel, E., et al. (2011). A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crops Research, 124(3), 468–472.

    Article  Google Scholar 

  • Giller, K. E., Andersson, J. A., Corbeels, M., Kirkegaard, J., Mortensen, D., Erenstein, O., et al. (2015). Beyond conservation agriculture. Frontiers in Plant Science, 6, 870.

    Article  Google Scholar 

  • Hellmuth, M. E., Moorhead, A., Thomson, M. C., & Williams, J. (2007). Climate risk management in Africa: Learning from practice. In M. E. Hellmuth, A. Moorhead, M. C. Thomson, & J. Williams (Eds.), Climate and society: Climate risk management in Africa: Learning from practice (Vol. 1). New York, NY: IRI.

    Google Scholar 

  • Hengxin, L., Hongwen, L., Xuemin, F., & Liyu, X. (2008). The current status of conservation tillage in China. In T. Goddard, M. A. Zoebisch, Y. T. Gan, W. Ellis, A. Watson, & S. Sombatpanit (Eds.), No-till Farming Systems (pp. 413–428). Bangkok: WASWC. World Association of Soil and Water Conservation, Special Publication No. 3.

    Google Scholar 

  • Hobbs, P. R. (2007). Conservation agriculture: What is it and why is it important for future sustainable food production. Journal of Agricultural Science, 145, 127–137.

    Article  Google Scholar 

  • Hobbs, P. R., & Govaerts, B. (2010). How conservation agriculture can contribute to buffering climate change. In M. P. Reynolds (Ed.), Climate change and crop production (pp. 117–199). Wallingford: CABI.

    Google Scholar 

  • Huaqi, W., Bouman, B. A. M., Zhao, D., Changgui, W., & Moya, P. F. (2003). Aerobic rice in northern China: Opportunities and challenges. In B. A. M. Bouman, H. Hengsdijk, B. Hardy, P. S. Bindraban, T. P. Tuong, & J. K. Ladha (Eds.), Water-wise rice production. Proceedings of a Thematic Workshop on Water-wise Rice Production, 8–11 April 2002, Los Baños, Philippines (pp. 207–222). Los Baños: International Rice Research Institute.

    Google Scholar 

  • Ismail, A. M., Singh, U. S., Singh, S., Dar, M. H., & Mackill, D. J. (2013). The contribution of submergence-tolerant (Sub1) rice varieties to food security in flood-prone rain-fed lowland areas in Asia. Field Crops Research, 152, 83–93.

    Article  Google Scholar 

  • Jalota, S. K., Singh, K. B., Chahal, G. B. S., Gupta, R. K., Chakraborty, S., Sood, A., Ray, S. S., & Panigraphy, S. (2009). Integrated effect of transplanting date, cultivar and irrigation on yield, water saving and water productivity of rice (Oryza sativa L.) in Indian Punjab: Field and simulation study. Agricultural Water Management, 96, 1096–1104.

    Article  Google Scholar 

  • Jarvis, A., Ramirez-Villegas, J., Herrera Campo, B. V., & Navarro-Racines, C. (2012). Is cassava the answer to African climate change adaptation? Tropical Plant Biology, 5(1), 9–29.

    Article  Google Scholar 

  • Jat, M. L., Chandna, P., Gupta, R., Sharma, S. K., & Gill, M. A. (2006). Laser land leveling: A precursor technology for resource conservation. Rice-Wheat Consortium Technical Bullletin Series No. 7. New Delhi: Rice-Wheat Consortium for the Indo-Gangetic Plains 48 pp.

    Google Scholar 

  • Jat, M. L., Saharawat, Y. S., & Gupta, R. (2011). Conservation agriculture in cereal systems of South Asia: Nutrient management perspectives. Karnataka Journal of Agricultural Sciences, 24, 100–105.

    Google Scholar 

  • Kassam, A., Friedrich, T., Derpsch, R., & Kienzle, J. (2015). Overview of the worldwide spread of conservation agriculture. Field actions science reports. The Journal of Field Actions, 8, 1–10.

    Google Scholar 

  • Kirk, G. J. D., Greenway, B. J., Atwell, B. J., Ismail, A. M., & Colmer, T. D. (2014). Adaptation of rice to flooded soils. In U. Lüttge, W. Beyschlag, & J. Cushman (Eds.), Progress in botany (Vol. 75). Berlin: Springer. https://doi.org/10.1007/978-3-642-38797-5_8.

    Chapter  Google Scholar 

  • Kumar, V., & Ladha, J. K. (2011). Direct seeding of rice: Recent developments and future research needs. Advances in Agronomy, 111, 297–313.

    Article  Google Scholar 

  • Lampayan, R. M., Bouman, B. A. M., Flor, R. J., & Palis, F. G. (2014). Developing and disseminating alternate wetting and drying water saving technology in the Philippines. In A. Kumar (Ed.), Mitigating water-shortage challenges in rice cultivation: Aerobic and alternate wetting and drying rice water-saving technologies. Manila: IRRI, Asian Development Bank.

    Google Scholar 

  • Lampayan, R. M., Samoy-Pascual, K. C., Sibayan, E. B., Ella, V. B., Jayag, O. P., Caban-gon, R. J., & Bouman, B. A. M. (2015a). Effects of alternate wetting and drying (AWD) threshold level and plant seedling age on crop performance, water input and water productivity of transplanted rice in Central Luzon. Paddy and Water Environment, 13, 215. https://doi.org/10.1007/s10333-014-0423-5.

    Article  Google Scholar 

  • Lampayan, R. M., Rejesus, R. M., Singleton, G. R., & Bouman, B. A. M. (2015b). Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Research, 170(2015), 95–108.

    Article  Google Scholar 

  • Liu, C., Cutforth, H., Chai, Q., & Gan, Y. (2016). Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agronomy for Sustainable Development, 36, 69. https://doi.org/10.1007/s13593-016-0404-8.

    Article  CAS  Google Scholar 

  • Lybbert, T. J., & Sumner, D. A. (2012). Agricultural technologies for climate change in developing countries: Policy options for innovation and technology diffusion. Food Policy, 37, 114–123.

    Article  Google Scholar 

  • Mahajan, G., Timsina, J., & Singh, K. (2011). Performance and water use efficiency of rice relative to establishment methods in northwestern Indo-Gangetic Plains. Journal of Crop Improvement, 25, 597–617.

    Article  Google Scholar 

  • MAIZE. (2013). MAIZE CRP annual report. Mexico: CIMMYT.

    Google Scholar 

  • MAIZE. (2015). MAIZE CRP annual report. Mexico: CIMMYT.

    Google Scholar 

  • MAIZE. (2016). MAIZE CRP annual report. Mexico: CIMMYT.

    Google Scholar 

  • Majumdar, K., Zingore, S., Garcia, F., Correndo, A., Timsina, J., & Johnston, A. M. (2017). Improving nutrient management for sustainable intensification of maize. In D. J. Watson (Ed.), Achieving sustainable cultivation of maize. Cambridge: Burleigh Dodds Publishing.

    Google Scholar 

  • Malesu, M. M., De Leeuw, J., & Oduor, A. (2012). Water harvesting experiences from the SearNet (2003–2012). Retrieved January 15, 2016, from http://whater.eu/pluginfile.php/137/mod_page/content/37/Malesu_WaterharvestingExperiencesfromtheSearnet2003-2012_IRC.

  • Miro, B., & Ismail, A. M. (2013). Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (OryzasativaL.). Frontiers in Plant Science, 4, 269.

    Article  CAS  Google Scholar 

  • Nelson, A., Wassmann, R., Sander, B. O., & Palao, L. K. (2015). Climate-determined suitability of the water saving technology “alternate wetting and drying” in rice systems: A scalable methodology demonstrated for a province in the Philippines. PLoS One, 10(12), e0145268. https://doi.org/10.1371/journal.pone.0145268.

    Article  CAS  Google Scholar 

  • Pachpute, J. S., Tumbo, S. D., Sally, H., & Mul, M. L. (2009). Sustainability of rainwater harvesting systems in rural catchment of Sub-Saharan Africa. Water Resources Management, 23(13), 2815–2839.

    Article  Google Scholar 

  • Palis, F. G., Lampayan, R. M., & Bouman, B. A. M. (2014). Adoption and dissemination of alternate wetting and drying technology for boro rice cultivation in Bangladesh. In A. Kumar et al. (Eds.), Mitigating water-shortage challenges in rice cultivation: Aerobic and alternate wetting and drying rice water-saving technologies. Manila: IRRI and Asian Development Bank.

    Google Scholar 

  • Pampolino, M. F., Manguiat, I. J., Ramanathan, S., Gines, H. C., Tan, P. S., Chi, T. T. N., Rajendran, R., & Buresh, R. J. (2007). Environmental impact and economic benefits of site-specific nutrient management (SSNM) in irrigated rice systems. Agricultural Systems, 93(2007), 1–24.

    Article  Google Scholar 

  • Pretty, J., Noble, A. D., Bossio, D., Dixon, J., Hine, R. E., Penning de Vries, F. W. T., & Morison, J. I. L. (2006). Resource-conserving agriculture increases yields in developing countries. Environmental Science & Technology, 40, 1114–1119.

    Article  CAS  Google Scholar 

  • Rejesus, R. M., Martin, A. M., & Gypmantasiri, P. (2013). Meta-impact assessment of the irrigated rice research consortium. In Special IRRI Report. Los Baños: International Rice Research Institute.

    Google Scholar 

  • RICE. (2016). RICE CRP proposal. Las Banjos: IRRI.

    Google Scholar 

  • Rijsberman, F. R. (2006). Water scarcity: Fact or fiction? Agricultural Water Management, 80, 5–22.

    Article  Google Scholar 

  • Rosegrant, M. W., Ringler, C., & Zhu, T. (2009). Water for agriculture: Maintaining food security under growing scarcity. Annual Review of Environment and Resources, 34, 205–222. https://doi.org/10.1146/annurev.environ.030308.090351.

    Article  Google Scholar 

  • Sander, B. O., Samson, M., & Buresh, R. J. (2014). Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops. Geoderma, 235–236, 355–362. https://doi.org/10.1016/j.geoderma.2014.07.020.

    Article  CAS  Google Scholar 

  • Sapkota, T. K., Majumdar, K., Jat, M. L., Kumara, A., Bishnoia, D. K., McDonald, A. J., & Pampolino, M. (2014). Precision nutrient management in conservation agriculture based wheat production of Northwest India: Profitability, nutrient use efficiency and environmental footprint. Field Crops Research, 155(2014), 233–244.

    Article  Google Scholar 

  • Sofoluwe, N. A., Tijani, A. A., & Baruwa, O. I. (2011). Farmers’ perception and adaptation to climate change in Osun State, Nigeria. African Journal of Agricultural Research, 6(20), 4789–4794.

    Google Scholar 

  • Tadesse, M., Shiferaw, B., & Erenstein, O. (2015). Weather index insurance for managing drought risk in smallholder agriculture: Lessons and policy implications for Sub-Saharan Africa. Agricultural and Food Economics, 3, 26.

    Article  Google Scholar 

  • Thierfelder, C., & Wall, P. C. (2009). Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil and Tillage Research, 105, 217–227.

    Article  Google Scholar 

  • Thierfelder, C., & Wall, P. C. (2010). Investigating Conservation Agriculture (CA) Systems in Zambia and Zimbabwe to mitigate future effects of climate change. Journal of Crop Improvement, 24, 113–121.

    Article  Google Scholar 

  • Thierfelder, C., Rusinamhodzi, L., Setimela, P., Walker, F., & Eash, N. S. (2016). Conservation agriculture and drought-tolerant germplasm: Reaping the benefits of climate-smart agriculture technologies in Central Mozambique. Renewable Agriculture and Food Systems, 156, 99–109.

    Google Scholar 

  • Thierfelder, C., Chivenge, P., Mupangwa, W., Rosenstock, T. S., Lamanna, C., & Eyre, J. (2017). How climate-smart is conservation agriculture (CA): Its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa. Food Security., 9, 537. https://doi.org/10.1007/s12571-017-0665-3.

    Article  Google Scholar 

  • Tuong, T. P., & Bouman, B. A. M. (2003). Rice production in water scarce environments. In J. W. Kijne, R. Barker, & D. Molden (Eds.), Water productivity in agriculture: Limits and opportunities for improvement (pp. 53–67). Wallingford: CABI Publishing.

    Chapter  Google Scholar 

  • Ussiri, D. A. N., & Lal, R. (2009). Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil and Tillage Research, 104, 39–47.

    Article  Google Scholar 

  • Valbuena, D., Erenstein, O., Homann-Kee Tui, S., Abdoulaye, T., Claessens, L., Duncan, A. J., et al. (2012). Conservation agriculture in mixed crop–livestock systems: Scoping crop residue trade-offs in sub-Saharan Africa and South Asia. Field Crops Research, 132, 175–184.

    Article  Google Scholar 

  • Verhulst, N., Govaerts, B., Verachtert, E., Castellanos-Navarrete, A., Mezzalama, M., Wall, P., et al. (2010). Conservation agriculture, improving soil quality for sustainable production systems? In R. Lal & B. A. Stewart (Eds.), Advances in soil science: Food security and soil quality (pp. 137–208). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Vermeulen, S., Aggarwal, P., Ainslie, A., Angelone, C., Campbell, B., Challinor, A., Hansen, J., Ingram, J., Jarvis, A., Kristjanson, P., Lau, C., Nelson, G., Thornton, P., & Wollenberg, E. (2012). Options for support to agriculture and food security under climate change. Environmental Science & Policy, 15, 136–144.

    Article  Google Scholar 

  • Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., et al. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555–561. https://doi.org/10.1038/nature09549.

    Article  CAS  Google Scholar 

  • Wada, Y., LPH, V. B., & Bierkens, M. F. P. (2011). Modelling global water stress of the recent past: On the relative importance of trends in water demand and climate variability. Hydrology and Earth System Sciences, 15, 3785–3808. https://doi.org/10.5194/hess-15-3785-2011.

    Article  Google Scholar 

  • Wakeyo, M. B. (2012). Economic analysis of water harvesting technologies in Ethiopia. Retrieved from http://edepot.wur.nl/240909.

  • Waqar, A., Jehangir, I. M., Shehzad, A., Mustaq, A. G., Maqsood, A., Riaz, A. M., Muhammad, R. C., Asad, S. Q., & Hugh, T. (2007). Sustaining crop water productivity in rice–Wheat systems of south asia: A case study from the Punjab, Pakistan. Colombo: International Water Management Institute, IWMI.

    Google Scholar 

  • Weller, S., Janz, B., Jörg, L., Kraus, D., Racela, H. S. U., Wassmann, R., Butterbach-Bahl, K., & Kiese, R. (2016). Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems. Global Change Biology, 22, 432–448. https://doi.org/10.1111/gcb.13099.

    Article  Google Scholar 

  • Westengen, O. T., & Brysting, A. K. (2014). Crop adaptation to climate change in the semi-arid zone in Tanzania: The role of genetic resources and seed systems. Agriculture & Food Security, 3, 3.

    Article  Google Scholar 

  • World Bank. (2014). World development report 2014. Washington, DC: World Bank.

    Book  Google Scholar 

  • Yadvinder-Singh, Humphreys, E., Kukal, S. S., Singh, B., Kaur, A., Thaman, S., Prashar, A., Yadav, S., Kaur, N., Dhillon, S. S., Smith, D. J., Timsina, J., & Gajri, P. R. (2009). Crop performance in a permanent raised bed rice–wheat cropping system in Punjab, India. Field Crops Research, 110, 1–20.

    Article  Google Scholar 

  • Yadvinder-Singh, Kukal, S. S., Jat, M. L., & Sidhu, H. S. (2014). Improving water productivity of wheat-based cropping systems in South Asia for sustained productivity. Advances in Agronomy, 127, 157–120. https://doi.org/10.1016/B978-0-12-800131-8.00004-2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Watson, D. (2019). Adaptation to Climate Change Through Adaptive Crop Management. In: Sarkar, A., Sensarma, S., vanLoon, G. (eds) Sustainable Solutions for Food Security . Springer, Cham. https://doi.org/10.1007/978-3-319-77878-5_10

Download citation

Publish with us

Policies and ethics