Skip to main content

Flagellates Versus Diatoms: Phytoplankton Trends in Tropical and Subtropical Estuarine-Coastal Ecosystems

  • Chapter
  • First Online:
Plankton Ecology of the Southwestern Atlantic

Abstract

Attempts to provide general patterns of phytoplankton and their regulating factors benefit from ecosystem comparisons, but these are strongly biased toward high-latitude environments of the northern hemisphere (> 20°N). In the present study, we compare the phytoplankton biomass and composition variability in two coastal environments in the southern hemisphere, the tropical Guanabara Bay, GB (23°S), and the subtropical Patos Lagoon Estuary, PLE (32°S), located on the South American southeast coast at the state of Rio de Janeiro and Rio Grande do Sul, respectively. These environments present contrasting features regarding the magnitude of anthropic impacts, the watershed size, geomorphology, and hydrology. Our goal was to identify the main factors that regulate the phytoplankton biomass and composition comparing data obtained at monthly intervals between the years 2011 and 2012 at a single station located in an area of significant water exchange in each environment. Surface water temperature, salinity, inorganic dissolved nutrients, chlorophyll a, phytoplankton biomass (carbon) and composition were analyzed. Phytoplankton biomass in the GB and PLE was dominated, respectively, by flagellates and diatoms, whereas cyanobacteria were more important in the former. Salinity was about twofold higher in the GB (mean 32.6 ± 1.5) than PLE (mean 15.4 ± 9.1) and, together with nutrient concentrations and their proportions, largely explained the observed different communities and much higher biomass in GB. GB presented strong eutrophication signals, with high ammonium and phosphate and lower, closer to limitation, silicate concentration. In contrast, high silicate concentration favored the predominance of diatoms in the PLE. Despite large environmental differences between both environments, the chlorophyll a presented a rather similar seasonal pattern, with maxima in austral summer/autumn and spring in both ecosystems. We suggest the seasonal pattern was associated to the incident light variation, but this hypothesis should be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu PC, Bergesch M, Proença LA et al (2010) Short- and long-term chlorophyll a variability in the shallow microtidal Patos Lagoon Estuary, Southern Brazil. Estuar Coasts 33:554–569

    Article  CAS  Google Scholar 

  • Abreu PC, Marangoni J, Odebrecht C (2016) So close, so far: differences in long-term chlorophyll a variability in three nearby estuarine-coastal stations. Mar Biol Res 13:1–13. https://doi.org/10.1080/17451000.2016.1189081

    Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728

    Article  Google Scholar 

  • Aminot A, Chaussepied M (1983) Manuel des analyses chimiques en milieu marin. Centre National pour l’Exploitation des Oceans, Brest

    Google Scholar 

  • ANTARES (2003). Latin American network for the study of long term changes in coastal ecosystems. http://antares.ws. Accessed 10 Oct 2017

  • Borcard D, Gillet F, Legendre P (2011) Canonical ordination. In: Numerical ecology with R. Springer, New York, pp 153–225

    Chapter  Google Scholar 

  • Carpenter EJ, Subramaniam A, Capone DG (2005) Corrigendum to “biomass and primary productivity of the cyanobacterium Trichodesmium spp. in the tropical N Atlantic Ocean”. Deep Sea Res Part 1 Oceanogr Res Pap 52:1787–1788

    Article  CAS  Google Scholar 

  • Carreira RS, Wagener ALR, Readman JW et al (2002) Changes in the sedimentary organic carbon pool of a fertilized tropical estuary, Guanabara Bay, Brazil: an elemental, isotopic and molecular marker approach. Mar Chem 79:207–227

    Article  CAS  Google Scholar 

  • Carstensen J, Klais R, Cloern JE (2015) Phytoplankton blooms in estuarine and coastal waters: seasonal patterns and key species. Estuar Coast Shelf Sci 162:98–109

    Article  Google Scholar 

  • Cloern JE, Jassby AD (2010) Patterns and scales of phytoplankton variability in estuarine-coastal ecosystems. Estuar Coasts 33:230–241

    Article  CAS  Google Scholar 

  • Cloern JE, Foster SK, Kleckner AE (2014) Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 11:2477–2501

    Article  Google Scholar 

  • Cloern JE, Abreu PC, Carstensen J et al (2016) Human activities and climate variability drive fast-paced change across the world’s estuarine–coastal ecosystems. Glob Chang Biol 22(2):513–529. https://doi.org/10.1111/gcb.13059

    Article  PubMed  Google Scholar 

  • Coelho-Souza SA, López MS, Guimarães JRD et al (2012) Biophysical interactions in the Cabo Frio upwelling system, Southeastern Brazil. Braz J Oceanogr 60(3):353–365. https://doi.org/10.1590/S1679-87592012000300008

    Article  Google Scholar 

  • Egge JK, Aksnes DL (1992) Silicate as regulating nutrient in phytoplankton competition. Mar Ecol Prog Ser 83:281–289

    Article  CAS  Google Scholar 

  • Fernandes EHL, Dyer KR, Möller Jr OO et al (2002) The Patos Lagoon hydrodynamics during an El Niño event (1998). Cont Shelf Res 22:1699–1713

    Article  Google Scholar 

  • Fujita CC, Odebrecht C (2007) Short term variability of chlorophyll a and phytoplankton composition in a shallow area of the Patos Lagoon Estuary (Southern Brazil). Atlântica 29(2):93–106

    Google Scholar 

  • Guinder VA, Molinero JC (2013) Climate changes effects on marine phytoplankton. In: Arias HA, Menendez AM (eds) Marine ecology in a changing world. CRC Press Taylor & Francis Group, Boca Raton, pp 68–90

    Chapter  Google Scholar 

  • Guinder VA, Popovich CA, Molinero JC et al (2010) Long-term changes in phytoplankton phenology and community structure in the Bahía Blanca Estuary, Argentina. Mar Biol 157:2703–2716

    Article  Google Scholar 

  • Haraguchi L, Carstensen J, Abreu PC et al (2015) Long-term changes of the phytoplankton community and biomass in the subtropical shallow Patos Lagoon Estuary, Brazil. Estuar Coast Shelf Sci 162:76–87

    Article  CAS  Google Scholar 

  • Hasle G (1978) Using the inverted microscope. In: Sournia A (ed) Phytoplankton manual, Monographs on oceanographic methodology, vol 6. UNESCO, Paris, pp 191–196

    Google Scholar 

  • Hillebrand H, Dürselen CD, Pollingher U et al (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • INMET (2017) Instituto Nacional de Meteorologia. http://www.inmet.gov.br/portal/

  • Islabão CA, Odebrecht C (2015) Influence of salinity on the growth of Akashiwo sanguinea and Prorocentrum micans (Dinophyta) under acclimated conditions and osmotic stress. Mar Biol Res 11:965–973

    Article  Google Scholar 

  • Kirk JTO (2011) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Kirst GO (1989) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 40:21–53

    Google Scholar 

  • Kjerfve B, Ribeiro CHA, Dias GMT et al (1997) Oceanographic characteristics of an impacted coastal bay: Baía de Guanabara, Rio de Janeiro, Brazil. Cont Shelf Res 17(13):1609–1643

    Article  Google Scholar 

  • Kjerfve B, Lacerda LD, Dias GMT (2001) Baía de Guanabara, Rio de Janeiro, Brazil. In: Seeliger U, Kjerfve B (eds) Coastal marine ecosystems of Latin America, Ecological studies, vol 144. Springer, Berlin, pp 107–117

    Chapter  Google Scholar 

  • Klais R, Tamminen T, Kremp A et al (2011) Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom. PlosOne 6(6):e21567

    Article  CAS  Google Scholar 

  • Knoppers BA, Kjerfve B (1999) Coastal lagoons of Southeastern Brazil: physical and biogeochemical characteristics. In: Perillo G, Piccolo C, Pino-Quivira M (eds) Estuaries of South America. Springer, Berlin, pp 35–66

    Chapter  Google Scholar 

  • Margalef R (1978) Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1(4):493–509

    Google Scholar 

  • Marques WC (2012) The temporal variability of the freshwater discharge and water levels at the Patos Lagoon, Brazil. Int J Geosci 3:758–766. https://doi.org/10.4236/ijg.2012.34076

    Article  Google Scholar 

  • Mayr LM, Tenenbaum D, Villac MC et al (1989) Hydrobiological characterization of Guanabara Bay. In: Magoon O, Neves C (eds) Coastlines of Brazil. American Society of Civil Engineers, New York, pp 124–139

    Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45(3):569–579. https://doi.org/10.4319/lo.2000.45.3.0569

    Article  CAS  Google Scholar 

  • METEOBLUE (2006) Previsões meteorológicas. https://www.meteoblue.com/pt/historyplus. Accessed 2 June 2017

  • Möller OO Jr, Paim PS, Loares ID (1991) Facteurs et mecanismes de la circulation des eaux dans l’estuaire de la lagune dos Patos. Bull lInst Geol Bass Aquitaine 49:15–21

    Google Scholar 

  • Möller O, Lorenzetti JA, Stech J et al (1996) The Patos Lagoon summertime circulation and dynamics. Cont Shelf Res 16(3):335–351

    Article  Google Scholar 

  • Montagnes DJS, Franklin DJ (2001) Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnol Oceanogr 46(8):2008–2018

    Article  CAS  Google Scholar 

  • Neveux J, Lantoine F (1993) Spectrofluorometric assay of chlorophylls and pheopigments using the least squares approximation technique. Deep Sea Res Part 1 Oceanogr Res Pap 40(9):1747–1765. https://doi.org/10.1016/0967-0637(93)90030-7

    Article  CAS  Google Scholar 

  • Niencheski JF, Baumgarten MG, Fillmann G et al (1999) Nutrients and suspended matter behavior in the Patos Lagoon Estuary (Brazil). In: Perillo GME, Piccolo MC, Pino-Quivira M (eds) Estuaries of South America. Springer, Heidelberg, pp 67–81

    Chapter  Google Scholar 

  • Niencheski LF, Windom HL, Moore WS et al (2007) Submarine groundwater discharge of nutrients to the ocean along a coastal lagoon barrier, Southern Brazil. Mar Chem 106:546–561

    Article  CAS  Google Scholar 

  • Odebrecht C, Abreu PC, Möller OO et al (2005) Drought effects on pelagic properties in the shallow and turbid Patos Lagoon, Brazil. Estuaries 28(5):675–685

    Article  Google Scholar 

  • Odebrecht C, Bergesch M, Rörig LR et al (2010) Phytoplankton interannual variability at Cassino Beach, Southern Brazil (1992–2007), with emphasis on the surf zone diatom Asterionellopsis glacialis. Estuar Coasts 33:570–583

    Article  CAS  Google Scholar 

  • Officer CB, Ryther JH (1980) The possible importance of silicon in marine eutrophication. Mar Ecol Prog Ser 3:83–91

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M et al. (2017) vegan: Community Ecology Package

    Google Scholar 

  • Olenina I, Hajdu S, Edler L et al (2010) Biovolumes and size-classes of phytoplankton in the Baltic Sea. HELCOM Balt Sea Environ Proc 106:144

    Google Scholar 

  • PELD (1999) Programa de Pesquisa Ecológica de Longa Duração. http://cnpq.br/apresentacao-peld/. Accessed 10 Oct 2017

  • Piola A, Möller OO, Guerrero R et al (2008) Variability of the subtropical shelf front off eastern South America: winter 2003 and summer 2004. Cont Shelf Res 28:1639–1648

    Article  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing

    Google Scholar 

  • Sevrin-Reyssac J, Machado MCS, Schutze MLM et al (1979) Biomasse et production du phytoplancton de la baie de Guanabara (État de Rio de Janeiro, Brésil) et du secteur océanique adjacent. Variations de mai à juillet 1978. Bul Mus Natn Hist Nat 4:329–354

    Google Scholar 

  • Smayda TJ (1990) Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Granéli E, Sundstrom B, Edler L, Anderson DM (eds) Toxic marine phytoplankton. Elsevier, New York, pp 29–40

    Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. J Fish Res Board Can, Ottawa

    Google Scholar 

  • Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25(11):1331–1346. https://doi.org/10.1093/plankt/fbg096

    Article  Google Scholar 

  • Tenório MMB, Duarte R, Barrera-Alba JJ et al (2010) Plankton structure of shallow coastal zone at Admiralty Bay, King George Island, West Antarctic Peninsula (WAP): chlorophyll biomass and size-fractionated chlorophyll during austral summer 2009/2010. INCT–APA 1:115–120

    Article  Google Scholar 

  • Torgan LC, Tundisi JG, Niencheski LF (2002) Seasonal variation of planktonic diatoms in Patos Lagoon, Southern Brazil. In: John J (ed) Proceedings of 15th diatom symposium. Gantner Verlag, Lichtenstein, p 459470

    Google Scholar 

  • UNESCO (1983) Chemical methods for use in marine environmental monitoring. Manual and Guides 12. IOC, Paris

    Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt Int Ver Limnol 9:1–38

    Google Scholar 

  • Valentin JL (2001) The Cabo Frio upwelling system. In: Seeliger U, Kjerfve B (eds) Coastal marine ecosystems of Latin America, Ecological studies, vol 144. Springer, Berlin, pp 97–105

    Chapter  Google Scholar 

  • Villac MC, Mayr LM, Tenenbaum DR et al. (1991) Sampling strategies proposed to monitor Guanabara Bay, RJ, Brazil. In: Coastal zone 1991, Los Angeles, pp 1168–1182

    Google Scholar 

  • Villac MC, Tenenbaum DR (2010) The phytoplankton of Guanabara Bay, Brazil. I. Historical account of its biodiversity. Biota Neotropica 10(2):271–293

    Article  Google Scholar 

  • Wang Z, Guo X, Qu L et al (2017) Effects of nitrogen and phosphorus on the growth of Levanderina fissa: how it blooms in Pearl River Estuary. J Ocean Univ China 16(1):114–120

    Article  CAS  Google Scholar 

  • Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnol Oceanogr 39:1985–1992

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Brazilian National Biodiversity Research Program (SISBIOTA-PELD Zonas Costeiras: CNPQ Proc. 563263/2015-5), the Brazilian Long Term Ecological Program (PELD CNPq Proc. 403809/2012-6, Proc. 403805/2012-0), and the research foundations of the states of Rio de Janeiro (FAPERJ Proc. E-26/110.114/2013) and Rio Grande do Sul (FAPERGS Proc. 12/3122-7). We would like to thank Ricardo Pollery for nutrient analysis (Laboratório de Biogeoquímica, UFRJ) and Márcio Tenório for chlorophyll analysis (Laboratório de Fitoplancton, UFRJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarisse Odebrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Odebrecht, C., Villac, M.C., Abreu, P.C., Haraguchi, L., Gomes, P.D.F., Tenenbaum, D.R. (2018). Flagellates Versus Diatoms: Phytoplankton Trends in Tropical and Subtropical Estuarine-Coastal Ecosystems. In: Hoffmeyer, M., Sabatini, M., Brandini, F., Calliari, D., Santinelli, N. (eds) Plankton Ecology of the Southwestern Atlantic. Springer, Cham. https://doi.org/10.1007/978-3-319-77869-3_12

Download citation

Publish with us

Policies and ethics