Skip to main content

Managing and Preserving Stingless Bees

In collaboration with Humberto Moo-Valle

  • Chapter
  • First Online:
Book cover Stingless Bees of Mexico

Abstract

Stingless beekeeping (or meliponiculture) depends closely on the different floral resources to support the growth of colonies and the production of surplus reserves of honey, pollen, and resins for a profitable harvest. The adequate management of colonies, through periods of abundance of resources and draught, is a key aspect to keep them in good condition and to obtain maximum production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams EM, Rue DJ (1988) The causes and consequences of deforestation among the prehistoric Maya. Hum Ecol 16:377–395

    Article  Google Scholar 

  • Aguirre A, Dirzo R (2008) Effects of fragmentation on pollinator abundance and fruit set of an abundant understory palm in a Mexican tropical forest. Biol Conserv 141:375–384

    Article  Google Scholar 

  • Ahmad Z, Johansen C (1973) Selective toxicity of carbophenotion and thricloroform to the honey bee and the alfalfa leaf cutting bee. Environ Entomol 2:27–30

    Article  CAS  Google Scholar 

  • Alfaro-Bates RG, González-Acereto JA, Ortíz-Diáz JJ, Viera-Castro FA, Burgos-Pérez AI, Martínez-Hernández E, Ramírez-Arriaga E (2010) Caracterización palinológica de las mieles de la peninsula de Yucatán. UADY-CONABIO

    Google Scholar 

  • Atkins EL (1993) Management strategies for protecting honey bees, Apis mellifera, from pesticides. In: Connor LJ, Rinderer TE, Sylvester HA, Wongsiri S (eds) Proceedings of the 1st international conference on the Asian honey bees and bee mites. Wicwas Press, Cheshire, pp 607–612

    Google Scholar 

  • Barbosa WF, Smagghe G, Guedes RNC (2015a) Perspective pesticides and reduced-risk insecticides, native bees and pantropical stingless bees: pitfalls and perspectives. Pest Manag Sci 71:1049–1053

    Article  PubMed  CAS  Google Scholar 

  • Barbosa WF, Tomé HVV, Bernardes RC, Siqueira MAL, Smagghe G, Guedes RNC (2015b) Biopesticide-induced behavioral and morphological alterations in the stingless bee Melipona quadrifasciata. Environ Toxicol Chem 34:2149–2158

    Article  PubMed  CAS  Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    Article  PubMed  CAS  Google Scholar 

  • Belzunces LP, Pélissier C, Lewis GB (1999) Hazards of pesticides to bees. Abstracts of the 7th International Symposium of the ICPBR Protection Group co-organized by INRA and ACTA, Université d’Avignon, France

    Google Scholar 

  • Benz G, Joeressen HJ (1994) A new pathotype of Bacillus thuringiensis with pathogenic action against sawflies (Hymenoptera, Symphita). Bull OILB-SROP 17:35–38

    Google Scholar 

  • Bernardes RC, Tomé HVV, Barbosa WF, Guedes RNC, Lima MAP (2017) Azadirachtin-induced antifeeding in Neotropical stingless bees. Apidologie 48(3):27–285. https://doi.org/10.1007/s13592-016-0473-3 (En prensa)

    Article  CAS  Google Scholar 

  • Broodsgard HF, Broodsgard CJ, Hansen H, Lovei GL (2003) Environmental risk assessment of transgene products using honey bee (Apis mellifera) larvae. Apidologie 34:139–145

    Article  Google Scholar 

  • Brown BV (2004) Revision of the Melaloncha cingulata-group of bee-killing flies (Diptera: Phoridae). Ann Entomol Soc Am 97:386–392

    Article  Google Scholar 

  • Brown BV (2005) Revision of the Melaloncha (M.) furcata-group of bee-killing flies (Diptera: Phoridae). Insect Syst Evol 36:241–258

    Google Scholar 

  • Brown BV (2016) Two new bee-killing flies from Brazil (Insecta: Diptera: Phoridae: Melaloncha). Biodivers Data J 4:e7715

    Article  Google Scholar 

  • Brown JC, Albrecht C (2001) The effect of tropical deforestation on stingless bees of the genus Melipona (Insecta: Hymenoptera: Apidae: Meliponini) in Central Rondonia, Brazil. J Biogeogr 28:623–634

    Article  Google Scholar 

  • Casida JE, Durkin KA (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol 58:99–117

    Article  PubMed  CAS  Google Scholar 

  • Catzín-Ventura G, Delgado A, Medina-Medina L (2008) Evaluación de la actividad antibacteriana de la miel de Melipona beecheii y Scaptotrigona pectoralis de Yucatán, México. In: Memorias V Congreso Mesoamericano sobre abejas sin aguijón. Universidad Autónoma de Yucatán, Mérida, pp 55–62

    Google Scholar 

  • Colla SR, Otterstatter MC, Gegear RJ, Thomson JD (2006) Plight of the bumble bee: pathogen spillover from commercial to wild populations. Biol Conserv 129:461–467

    Article  Google Scholar 

  • Colleto-Silva A (2005) Captura de enxames de abelhas sem ferrão (Hymenoptera, Apidae, Meliponinae) sem destruição de árvores. Acta Amazon 35:383–388

    Article  Google Scholar 

  • Costa L, Venturieri GC (2009) Diet impacts on Melipona flavolineata workers. J Apic Res Bee World 48:38–45

    Article  CAS  Google Scholar 

  • Costa LM, Grella TC, Barbosa RA, Malaspina O, Nocelli RCF (2015) Determination of acute lethal doses (LD50 and LC50) of imidacloprid for the native bee Melipona scutellaris Latreille, 1811 (Hymenoptera: Apidae). Sociobiology 62:578–582

    Google Scholar 

  • Costantini D (2015) Land-use changes and agriculture in the tropics: pesticides as an overlooked threat to wildlife. Biodivers Conserv 24:1837–1839

    Article  Google Scholar 

  • Crozier RH (1971) Heterozygosity and sex determination in haplo-diploidy. Am Nat 105:399–412

    Article  Google Scholar 

  • Crozier RH, Pamilo P (1996) Evolution of social insect colonies. Sex allocation and kin selection. Oxford University Press, Oxford, UK

    Google Scholar 

  • Cruz AS, da Silva-Zacarin EC, Bueno OC, Malaspina O (2010) Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis mellifera L.) larvae. Cell Biol Toxicol 26:165–176

    Article  CAS  Google Scholar 

  • Dafni A, Kevan P, Gross CL, Goka K (2010) Bombus terrrestris, pollinator, invasive and pest: an assessment of problems associated with its widespread introductions for commercial purposes. Appl Entomol Zool 45:101–113

    Article  Google Scholar 

  • De Araujo Freitas JC, González-Acereto JA, Marrufo-Olivares JC (2010) Apicultura práctica en la Península de Yucatán. Ediciones de la Universidad Autónoma de Yucatán, Mérida

    Google Scholar 

  • DeGrandi-Hoffman G, Chen Y (2015) Nutrition, immunity and viral infections in honey bees. Curr Opin Insect Sci 10:170–176

    Article  PubMed  Google Scholar 

  • De la Rúa P, Jaffé R, dall’ Olio R, Muñoz I, Serrano J (2009) Biodiversity, conservation and current threats to European honeybees. Apidologie 40:263–284

    Article  Google Scholar 

  • Decourtye A, Devillers J, Genecque E, Le Menach K, Budzinski H, Cluzeau S, Pham-Delègue MH (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch Environ Contam Toxicol 48:242–250

    Article  PubMed  CAS  Google Scholar 

  • Decourtye A, Mader E, Desneux N (2010) Landscape enhancement of floral resources for honey bees in agro-ecosystems. Apidologie 41:264–277

    Article  Google Scholar 

  • Del Sarto MCL, Oliveira EE, Guedes RNC, Campos LAO (2014) Differential insecticide susceptibility of the Neotropical stingless bee Melipona quadrifasciata and the honey bee Apis mellifera. Apidologie 45:626–636

    Article  CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:57–80

    Article  CAS  Google Scholar 

  • Devillers J, Pham-Delègue M (2002) Honey bees: estimating the environmental impact of chemicals. Taylor and Francis, London

    Book  Google Scholar 

  • Dicks LV, Showler DA, Sutherland WJ (2010) Bee conservation: evidence for the effects of interventions. Pelagic Publishing, Exeter

    Google Scholar 

  • dos Santos CF, Acosta AL, Dorneles AL, dos Santos PDS, Blochtein B (2016) Queens become workers: pesticides alter caste differentiation in bees. Nat Scientific Rep 6:31605

    Article  CAS  Google Scholar 

  • Drescher W, Geusen-Pfister H (1991) Comparative testing of the oral toxicity of acephate, dimethoate and methomyl to honeybees, bumblebees and Syrphidae. Acta Hortic (288):133–136

    Google Scholar 

  • Ellis EA, Romero Montero JA, Hernández Gómez IU (2017) Deforestation processes in the state of Quintana Roo, México: the role of land use and community forestry. Trop Conserv Sci 10:1–12

    Article  Google Scholar 

  • Ferron P (1978) Biological control of insect pests by entomogenous fungi. Annu Rev Entomol 23:409–442

    Article  Google Scholar 

  • Fischer D, Moriarty T (2014) Pesticide risk assessment for pollinators. SETAC-Wiley Blackwell, Oxford

    Book  Google Scholar 

  • Flores-Guido JS, Vermont-Ricalde R (2011) La vegetación de la peninsula de Yucatán y su miel. In: Echazarreta C (ed) La miel y las abejas, el dulce convenio del Mayab. Secretaría de Educación del Estado de Yucatán, Yucatánpp, pp 33–58

    Google Scholar 

  • Freitas B, Imperatriz-Fonseca VL, Medina LM, Kleinter AMP, Galetto L, Nates-Parra G, Quezada-Euán JJG (2009) Diversity, threats and conservation of native bees in the Neotropics. Apidologie 40:332–346

    Article  Google Scholar 

  • García-Morales R, Moreno CE, Badano EI, Zuria I, Galindo-González J, Rojas-Martínez AE et al (2016) Deforestation impacts on bat functional diversity in tropical landscapes. PLoS One 11:e0166765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen K, Carvalheiro LG, Harder LD, Afik MO et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611

    Article  PubMed  CAS  Google Scholar 

  • Gaston KJ, Smith RM, Thompson K, Warren PH (2005) Urban domestic gardens (II): experimental tests of methods for increasing biodiversity. Biodivers Conserv 14:395–413

    Article  Google Scholar 

  • Gatehouse JA (2011) Prospects for using proteinase inhibitors to protect transgenic plants against attack by herbivorous insects. Curr Protein Pept Sci 12:409–416

    Article  PubMed  CAS  Google Scholar 

  • Gemmill-Herren B (ed) (2016) Pollination services to agriculture: sustaining and enhancing a key ecosystem service. FAO Routledge, Cornwall, UK

    Google Scholar 

  • Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J et al (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–381

    Article  PubMed  CAS  Google Scholar 

  • Gilpin M.E., Soulé M.E. (1986) Minimum viable populations: process of species extinction. En: Soulé M.E. (ed) Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland

    Google Scholar 

  • Girolami V, Mazzon L, Squartini A, Mori N, Marzaro M, Di Bernardo A, Greatti M, Giorio C, Tapparo A (2009) Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. J Econ Entomol 102:1808–1815

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Escobar E, Liedo P, Montoya P, Vandame R, Sánchez D (2014) Behavioral response of two species of stingless bees and the honey bee (Hymenoptera: Apidae) to GF-120. J Econ Entomol 107:1447–1449

    Article  PubMed  Google Scholar 

  • González-Acereto JA (2008) Cría y manejo de abejas nativas sin aguijón en México. Ed. UADY-Secretaría Fomento Agropecuario y Pesquero Estado de Yucatán, México

    Google Scholar 

  • González-Acereto JA, Medina-Medina LA (1998) La respuesta defensiva de Scaptotrigona pectoraliscomo un contundente escudo de protección contra las incursiones de Lestrimelitta niitkib dirigidas a otras especies de abejas sin aguijón. In: Memorias VI Congreso Ibero-americano de apicultura. Mérida, Yucatán, pp 171–173

    Google Scholar 

  • González-Acereto JA, Quezada-Euán JJG, Medina-Medina LA (2006) New perspectives for stingless beekeeping in the Yucatan: results of an integral program to rescue and promote the activity. J Apic Res 45:234–239

    Article  Google Scholar 

  • Goulson D, Hughes WOH (2015) Mitigating the anthropogenic spread of bee parasites to protect wild pollinators. Biol Conserv 191:10–19

    Article  Google Scholar 

  • Graves JB, Mackensen O (1965) Topical application and insecticide resistance studies on the honey bee. J Econ Entomol 58:990–993

    Article  CAS  Google Scholar 

  • Greco M, Spooner-Hart R, Holford P (2010) A stingless bee hive design for a broader climate range. J Apic Res 49:290–292

    Article  Google Scholar 

  • Greig-Smith PW, Thompson HM, Hardy AR, Bew MH, Findlay E (1994) Incidents of poisoning of honeybees (Apis mellifera) by agricultural pesticides in great Britain 1981–1991. Crop Prot 13:567–581

    Article  CAS  Google Scholar 

  • Grüter C, von Zuben LG, Segers FHID, Cunningham JP (2016) Warfare in stingless bees. Insect Soc 63:223–236

    Article  Google Scholar 

  • Guedes RNC, Smagghe G, Stark JD, Desneux N (2016) Pesticide induced stress in arthropod pests for optimized integrated pest management programs. Annu Rev Entomol 61:1–20

    Article  CAS  Google Scholar 

  • Guez D, Suchail S, Gauthier M, Maleszka R, Belzunces LP (2001) Contrasting effects of imidacloprid in 7- and 8-day-old honeybees (Apis mellifera). Neurobiol Learn Mem 76:183–191

    Article  PubMed  CAS  Google Scholar 

  • Guirguis GN, Brindley WA (1975) Carbaryl penetration into and metabolism by alfalfa leafcutting bees Megachile pacifica. J Agric Food Chem 23:274–279

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez-Olivares M, Rodríguez-Maciel JC, Llanderal-Cázares C, Terán-Vargas AP, Lagunes-Tejeda Á, Díaz-Gómez O (2007) Estabilidad de la resistencia a neonicotinoides en Bemisia tabaci (Gennadius), biotipo B de San Luis Potosí, México. Agrociencia 41:913–920

    Google Scholar 

  • Guzmán-Novoa E, Hamiduzzaman MM, Anguiano-Baez R, Correa-Benítez A, Castañeda-Cervantes E, Arnold NI (2015) First detection of honey bee viruses in stingless bees in North America. J Apic Res 54:93–95

    Article  Google Scholar 

  • Habib H, Fazili KM (2007) Plant protease inhibitors: a defense strategy in plants. Biotechnol Mol Biol Rev 2:68–85

    Google Scholar 

  • Hadley AS, Betts MG (2012) The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence. Biol Rev 87:526–544

    Article  PubMed  Google Scholar 

  • Hanley AV, Huang ZY, Pett WL (2003) Effects of dietary transgenic Bt corn pollen on larvae of Apis mellifera and Galleria mellonella. J Apic Res 42:77–81

    Article  Google Scholar 

  • Hanski I (2011) Habitat loss, the dynamics of biodiversity and a perspective on conservation. Ambio 40:248–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Haughton AJ, Champion GT, Hawes C, Heard MS, Brooks DR, Bohan DA et al (2003) Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops: II. Within-field epigeal and aerial arthropods. Phylos Trans R Soc Lond B 358:1863–1877

    Article  CAS  Google Scholar 

  • Hawes C, Haughton AJ, Osborne JL, Roy DB, Clark SJ, Perry JN et al (2003) Responses of plants and invertebrate trophic groups to contrasting herbicide regimes in the farm scale evaluations of genetically modified herbicide-tolerant crops. Phylos Trans R Soc Lond B 358:1899–1913

    Article  CAS  Google Scholar 

  • Hendriksma HP, Küting M, Härtel S, Näther A, Dohrmann AB, Steffan-Dewenter I et al (2013) Effect of stacked insecticidal cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria. PLoS One 8:e59589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herbert LT, Vázquez DE, Arenas A, Farina WM (2014) Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour. J Exp Biol 217(Pt 19):3457–3464

    Article  PubMed  Google Scholar 

  • Hérnandez JL, Frankie GW, Thorp RW (2009) Ecology of urban bees: a review of current knowledge and directions for future study. Cities Environ 2:1–15

    Article  Google Scholar 

  • Herrera y Herrera B. (2003) Análisis de la deforestación y dinámica territorial en México periodo 1980–2000. Universidad Autónoma de Chapingo, División de Ciencias Forestales, México

    Google Scholar 

  • Higes M, Martín-Hernández R, Garrido-Bailón E, González-Porto AV, García-Palencia P, Meana A et al (2009) Honeybee colony collapse due to Nosema ceranae in professional apiaries. Environ Microbiol Rep 1:110–113

    Article  PubMed  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Huang ZY, Hanley AV, Pett WL, Langenberg M, Duan JJ (2004) Field and semifield evaluation of impacts of transgenic canola pollen on survival and development of worker honey bees. J Econ Entomol 97:1517–1523

    Article  PubMed  Google Scholar 

  • INEGI (2011) Carta de uso de suelo y vegetación Serie IV. Instituto Nacional de Estadística, Geografía e Informática

    Google Scholar 

  • Inglesfield C (1989) Pyrethroids and terrestrial non-target organisms. Pestic Sci 27:387–428

    Article  CAS  Google Scholar 

  • IPBES (2016) In: Potts SG et al (eds) Summary for policymakers of the assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services on pollinators, pollination and food production. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, p 36

    Google Scholar 

  • Iwasa T, Motoyama N, Ambrose JT, Roe MR (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot 23:371–378

    Article  CAS  Google Scholar 

  • Jacob CRO, Soares HM, Carvalho SM, Nocelli RCF, Malaspina O (2013) Acute toxicity of fipronil to the stingless bee Scaptotrigona postica Latreille. Bull Environ Contam Toxicol 90:69–72

    Article  PubMed  CAS  Google Scholar 

  • Jacob CRO, Soares HM, Nocelli RC, Malaspina O (2015) Impact of fipronil on the mushroom bodies of the stingless bee Scaptotrigona postica. Pest Manag Sci 71:114–122

    Article  PubMed  CAS  Google Scholar 

  • Johansen CA, Mayer DF (1990) Pollinator protection: a bee pesticide handbook. Wicwas Press, Kalamazoo, Michigan

    Google Scholar 

  • Johansen CA, Mayer DF, Eves J, Kious CW (1983) Pesticides and bees. Environ Entomol 12:1513–1518

    Article  CAS  Google Scholar 

  • Johnson RM (2015) Honey bee toxicology. Annu Rev Entomol 60:415–434

    Article  PubMed  CAS  Google Scholar 

  • Kaspari M, O’Donell S (2003) High rates of army ant raids in the Neotropics and implications for ant colony and community structure. Evol Ecol Res 5:933–939

    Google Scholar 

  • Kerr W. E. (2002) Extincão de especies: a grande crise biológica do momento e como afeta os meliponinios. En: Anais do V encontro sobre abelhas, pp 4-9. Riberao Preto, São Paulo

    Google Scholar 

  • Kiatoko N, Raina SK, Langevelde F (2016) A vertical compartmented hive design for reducing post-harvest colony losses in three Afrotropical stingless bee species (Apidae: Meliponinae). Int J Develop Res 06:9026–9034

    Google Scholar 

  • Koul O. (2004) Neem: a global prespective. En: Koul O, Wahab S (eds). Neem: today and in the new millennium. Kluwer Academic. Dordrecht

    Google Scholar 

  • Kremen C, M’Gonigle LK (2015) Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J Appl Ecol 52:602–610

    Article  Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci USA 99:16812–16816

    Article  PubMed  CAS  Google Scholar 

  • Leahey JP (1985) The pyrethroid insecticides. Taylor and Francis, London

    Google Scholar 

  • Landaverde-González P, Quezada-Euán JJG, Theodorou P, Murray TE, Husemann M, Ayala R, Moo-Valle JH, Vandame R, Paxton RJ (2017) Sweat bees on hot chillies: provision of pollination services by native bees in traditional slash-and-burn agriculture in the Yucatan peninsula of tropical Mexico. J Appl Ecol 54(6):1814–1824

    Article  PubMed  PubMed Central  Google Scholar 

  • Lasota JA, Dybas RA (1991) Avermectina, a novel class of compounds: implications for use in arthropod pest control. Annu Rev Entomol 36:91–117

    Article  PubMed  CAS  Google Scholar 

  • Laurence WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29:107–116

    Article  Google Scholar 

  • Lima MAP, Pires CSS, Guedes RNC, Nakasu EYT, Lara MS, Fontes EMG, Sujii ER, Dias SC, Campos LAO (2011) Does Cry1Ac BT-toxin impair development of worker larvae of Africanized honey bee? J Appl Entomol 135:415–422

    Article  CAS  Google Scholar 

  • Lima MAP, Pires C, Guedes R, Campos L (2013) Lack of lethal and sublethal effects of Cry1Ac Bt-toxin on larvae of the stingless bee Trigona spinipes. Apidologie 44:21–28

    Article  CAS  Google Scholar 

  • Lima MA, Martins GF, Oliveira EE, Guedes RN (2016) Agrochemical-induced stress in stingless bees: peculiarities, underlying basis, and challenges. J Comp Physiol A 202:733–747

    Article  CAS  Google Scholar 

  • Liu B, Xu CG, Yan FM, Gong RZ (2005) The impacts of the pollen of insect-resistant transgenic cotton on honeybees. Biodivers Conserv 14:3487–3496

    Article  Google Scholar 

  • Long EY, Krupke CH (2016) Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nat Commun 7:11629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lourenço CT, Carvalho SM, Malaspina O, Nocelli RCF (2012) Oral toxicity of Fipronil insecticide against the stingless bee Melipona scutellaris (Latreille, 1811). Bull Environ Contam Toxicol 89:921–924

    Article  PubMed  CAS  Google Scholar 

  • Lóriga-Peña W, Fonte-Carballo L, Demdio-Lorenzo J (2014) Reporte de Aethina tumida Murray (Coleoptera, Nitidulidae) en colonias de la abeja sin aguijón Melipona beecheii Bennett de Matanzas y Mayabeque. Revista de Salud Animal 36, no.3 La Habana sep.-dic

    Google Scholar 

  • Lundin O, Rundlöf M, Smith HG, Fries I, Bommarco R (2015) Neonicotinoid insecticides and their impacts on bees: a systematic review of research approaches and identification of knowledge. PLoS One 10(8):e0136928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macías-Macías JO, Otero-Colina G (2004) Infestation of Pyemotes tritici (Acari: Pyemotidae) on Melipona colimana (Hymenoptera: Apidae: Meliponinae): a case study. Agrociencia 38:525–528

    Google Scholar 

  • Macieira OJD, Hebling-Beraldo MJA (1989) Laboratory toxicity of insecticides to workers of Trigona spinipes (F. 1793) (Hymenoptera: Apidae). J Apic Res 28:3–6

    Article  Google Scholar 

  • MacIvor JS, Packer L (2015) ‘Bee hotels’ as tools for native pollinator conservation: a premature verdict? PLoS One 10(3):e0122126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malaspina O, Stort AC (1983) Estudo da tolerância ao DDT e relação com outros caracteres em abelhas sociais. Revista Brasileira de Biología 43:327–330

    Google Scholar 

  • Malone LA, Pham-Delegue MH (2001) Effects of transgene products on honeybees (Apis mellifera) and bumble bees (Bombus sp.). Apidologie 32:287–304

    Article  CAS  Google Scholar 

  • Malone LA, Todd JH, Burgess EPJ, Christeller JT (2004) Development of hypopharyngeal glands in adult honey bees fed with a Bt toxin, a biotin-binding protein and a protease inhibitor. Apidologie 35:655–664

    Article  CAS  Google Scholar 

  • Martin S, Medina ML (2004) Africanized honeybees have unique tolerance to Varroa mites. Trends Parasitol 20:112–114

    Article  PubMed  Google Scholar 

  • Martin SJ, Hardy J, Villalobos E, Martín-Hernández R, Nikaido S, Higes M (2013) Do the honeybee pathogens Nosema ceranae and deformed wing virus act synergistically? Environ Microbiol Rep 5:506–510

    Article  PubMed  PubMed Central  Google Scholar 

  • Medina LM, Hart AG, Ratnieks FLW (2009) Hygienic behavior in the stingless bees Melipona beecheii and Scaptotrigona pectoralis (Hymenoptera: Meliponini). Genet Mol Res 8:571–576

    Article  PubMed  CAS  Google Scholar 

  • Medina-Medina L, Quezada-Euán JJG, Natsopoulou ME, Paxton RJ, Suraporn S (2012) Nosema in Mexican bees. Proceedings 5th European conference of Apidology, Halle der Salle 2012, p. 231

    Google Scholar 

  • Meled M, Thrasyvoulou A, Belzunces LP (1998) Seasonal variations in susceptibility of Apis mellifera to the synergistic action of prochloraz and deltamethrin. Environ Toxicol Chem 17:2517–2520

    Article  CAS  Google Scholar 

  • Meneses Calvillo L, Meléndez Ramírez V, Parra Tabla V, Navarro J (2010) Bee diversity in a fragmented landscape of the Mexican neotropic. J Insect Conserv 14:323–334

    Article  Google Scholar 

  • Menezes C, Coletto-Silva A, Gazeta GS, Kerr WE (2009) Infestation by Pyemotes tritici (Acari, Pyemotidae) causes death of stingless bee colonies (Hymenoptera: Meliponina). Genet Mol Res 8:630–634

    Article  PubMed  CAS  Google Scholar 

  • Menezes C, Vollet-Neto A, Imperatriz-Fonseca VL (2012) A method for harvesting unfermented pollen from stingless bees (Hymenoptera, Apidae, Meliponini). J Apic Res 51:240–244

    Article  Google Scholar 

  • Miles M (2003) The effects of spinosad, a naturally derived insect control agent to the honeybee. B Insectol 56:119–124

    Google Scholar 

  • Moo-Valle H, Quezada-Euán JJG, Navarro J, Rodriguez-Carvajal LA (2000) Patterns of intranidal temperature fluctuation for Melipona beecheii colonies in natural nesting cavities. J Apic Res 39:3–7

    Article  Google Scholar 

  • Moo-Valle H, Quezada-Euan JJG, Wenseleers T (2001) The effect of food reserves on the production of sexual offspring in the stingless bee Melipona beecheii (Apidae, Meliponini). Insect Soc 48:398–403

    Article  Google Scholar 

  • Moo-Valle H, Quezada-Euán JJG, Canto J, González-Acereto JA (2004) Caste ontogeny and the distribution of reproductive cells on the combs of Melipona beecheii B. (Hymenoptera: Meliponini). Apidologie 35:587–594

    Article  Google Scholar 

  • Moraes SS, Bautista AR, Viana BF (2000) Avaliacão da toxicidade aguda (DL50 e CL50) de insecticidas para Scaptotrigona tubida (Smith) (Hymenoptera: Apidae): via de contacto. Anais da Sociedade Entomologica do Brasil 29:31–37

    Article  CAS  Google Scholar 

  • Morandin L. A. (2008) Genetically modified crops: effects on bees and pollination. James R.R. y Pitts-Singer T.L. (eds) Bee pollination in agricultural ecosystems, 203-218. Oxford University Press, NY

    Google Scholar 

  • Morandin LA, Winston ML (2005) Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecol Appl 15:871–881

    Article  Google Scholar 

  • Morandin LA, Winston ML (2006) Pollinators provide economic incentive to preserve natural land in agroecosystems. Agricult Ecosyst Environ 116:289–292

    Article  Google Scholar 

  • Moreira MD, Picanço MC, Martins JC, Campos MR, Chediak M (2007) Uso de inseticidas botânicos no controle de pragas. In: Zambolim L, Lopes CA, Picanço MC, Costa H (eds) Manejo integrado de doenças e pragas em hortaliças. Embrapa, Brasília, pp 577–606

    Google Scholar 

  • Motzke I, Tscharntke T, Wanger TC, Klein AM (2015) Pollination mitigates cucumber yield gaps more than pesticide and fertilizer use in tropical smallholder gardens. J Appl Ecol 52:261–269

    Article  Google Scholar 

  • Mureithi JG (2008) Use plant pesticides to control crop pests. Kenya Agricultural Research Institute, Kenya

    Google Scholar 

  • Neumann P, Carreck NL (2010) Honey bee colony losses. J Apic Res 49:1–6

    Article  Google Scholar 

  • Norfolk O, Eichhor MP, Gilbert F (2016) Flowering ground vegetation benefits wild pollinators and fruit set of almond within arid smallholder orchards. Insect Conserv Diver 9:236–243

    Article  Google Scholar 

  • Nogueira-Neto P (1997) Vida e criação de abelhas indígenas sem ferrão. Editora Nogueirapis, São Paulo

    Google Scholar 

  • Novais SMA, Nunes CA, Santos NB, D’Amico AR, Fernandes GW, Quesada M et al (2016) Effects of a possible pollinator crisis on food crop production in Brazil. PLoS One 11:e0167292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nunes-Silva P, Piot N, Meeus I, Blochtein B, Smagghe G (2016) Absence of Leishmaniinae and Nosematidae in stingless bees. Nat Sci Rep 6:32547

    Article  CAS  Google Scholar 

  • D’Oliveira APM, Venturieri GC, Contrera FAL (2013) Body size variation, abundance and control techniques of Pseudohypocera kerteszi, a plague of stingless bee keeping. B Insectol 66:203–208

    Google Scholar 

  • Otterstatter MC, Thomson JD (2008) Does pathogen spillover from commercially reared bumble bees threaten wild pollinators? PLoS One 3(7):e2771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paxton RJ, Klee J, Korpela S, Fries I (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 38:558–565

    Article  Google Scholar 

  • Pellet J, Fleishman E, Dobkin DS, Gander A, Murphy DD (2007) An empirical evaluation of the area and isolation paradigm of metapopulation dynamics. Biol Conserv 136:483–495

    Article  Google Scholar 

  • Pernal SF, Baird DS, Birmingham AL, Higo HA, Slessor KN, Winston ML (2005) Semiochemicals influencing the host-finding behaviour of Varroa destructor. Exp Appl Acarol 37:1–26

    Article  PubMed  CAS  Google Scholar 

  • Phalan B, Bertzky M, Butchart SHM, Donald PF, Scharlemann JPW, Stattersfield AJ, Balmford A (2013) Crop expansion and conservation priorities in tropical countries. PLoS One 8:e51759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plischuk S, Martín-Hernández R, Prieto L, Lucía M, Botías C, Meana A, Abrahamovich AH, Lange C, Higes M (2009) South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ Microbiol Rep 1:131–135

    Article  PubMed  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts, and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Quezada-Euán JJG (1988) Estudio comparativo sobre la adaptación y desarrollo preliminar de colonias de Melipona beecheii B. en cuatro tipos de alojamiento en la zona centro del estado de Yucatán, México (Hymenoptera: Apídae). Tesis de Licenciatura, Universidad Autónoma de Yucatán, México

    Google Scholar 

  • Quezada-Euán JJG, González-Acereto JA (1994) A preliminary study on the development of colonies of Melipona beecheii in traditional and rational hives. J Apic Res 33:167–170

    Article  Google Scholar 

  • Quezada-Euán JJG, González-Acereto JA (2002) Notes on the nest habits and host range of cleptobiotic Lestrimelitta niitkib (Ayala 1999) (Hymenoptera: Meliponini) from the Yucatán eninsula. México Acta Zool Mex 86:245–249

    Google Scholar 

  • Quezada-Euán JJG, Ayala BR (2010) Abejas nativas de México, la importancia de su conservación. Ciencia y Desarrollo, Octubre 2010

    Google Scholar 

  • Quezada-Euán JJG, May-Itzá W d J, González-Acereto JA (2001) Meliponiculture in México: problems and perspective for development. Bee World 82:160–167

    Article  Google Scholar 

  • Quezada-Euán JJG, May-Itzá WdJ, Rincón M, De la Rúa P, Paxton RJ (2012) Genetic and phenotypic differentiation in endemic Scaptotrigona hellwegeri (Apidae: Meliponini): implications for the conservation of stingless bee populations in contrasting environments. Insect Conserv Diver 5:433–443

    Article  Google Scholar 

  • Quezada-Euán JJG, Ramírez J, Eltz T, Pokorny T, Medina R, Monsreal R (2013) Does sensory deception matter in eusocial obligate food robber systems? A study of Lestrimelitta and stingless bee hosts. Anim Behav 85:817–823

    Article  Google Scholar 

  • Ramos EM, Medina ML, May-Itzá W (2003) Atracción del vinagre y el ácido acético sobre Pseudohypocera kerteszi (Diptera: Phoridae) en Yucatán, México. In: Memorias III seminario Mesoamericano sobre abejas sin aguijón. Tapachula, Chiapas, Mexico, pp 27–30

    Google Scholar 

  • Rebelo KS, Ferreira AG, Carvalho-Zilse GA (2016) Physicochemical characteristics of pollen collected by Amazonian stingless bees. Ciência Rural 46:927–932

    Article  Google Scholar 

  • Rech RA, Schwade MA, Schwade MRM (2013) Abelhas-sem-ferrão amazônicas defendem meliponários contra saques de outras abelhas. Acta Amazon 43:389–394

    Article  Google Scholar 

  • Robinson GE (1981) Pseudohypocera kerteszi (Enderlein) (Diptera: Phoridae), a pest of the honeybee. Fla Entomol 64:456–457

    Article  Google Scholar 

  • Rickli M, Guerin PM, Diehl PA (1992) Palmitic acid released from honeybee worker larvae attracts the parasitic mite Varroa jacobsoni on a servosphere. Naturwissenschaften 79:320–322

    Article  CAS  Google Scholar 

  • Robroek BJM, Jong HD, Arce H, Sommeijer MJ (2003) The development of Pseudohypocera kerteszi (Diptera, Phoridae), a kleptoparasite in nests of stingless bees (Hymenoptera, Apidae) in central America. Proc Sec Experimental Appl Entomol Netherlands Entomol Soc 14:71–74

    Google Scholar 

  • Rodrigues CG, Krüger AP, Barbosa WF, Guedes RNC (2016) Leaf fertilizers affect survival and behavior of the neotropical stingless bee Friesella schrottkyi. J Econ Entomol 109:1001–1008

    Article  Google Scholar 

  • Romero MJ, Quezada-Euán JJG (2013) Pollinators in biofuel agricultural systems: the diversity and performance of bees (Hymenoptera: Apoidea) on Jatropha curcas in Mexico. Apidologie 44:419–429

    Article  Google Scholar 

  • Rosa AS, Teixeira JSG, Vollet-Neto A, Queiroz EP, Blochtein B, Pires CSS, Imperatriz-Fonseca VL (2016) Consumption of the neonicotinoid thiamethoxam during the larval stage affects the survival and development of the stingless bee, Scaptotrigona aff. depilis. Apidologie 47:729–738

    Article  CAS  Google Scholar 

  • Rosete-Vergés FA, Pérez-Damián JL, Villalobos-Delgado M, Navarro-Salas EN, Salinas-Chávez E, Remond-Noa R (2014) El avance de la deforestación en México 1976-2007. Madera y Bosques 20:21–35

    Article  Google Scholar 

  • Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rueda X (2010) Understanding deforestation in the southern Yucatán: insights from a sub-regional, multi-temporal analysis. Reg Environ Chang 10:175–189

    Article  Google Scholar 

  • SAGARPA (2008) Manual Operativo de la campaña contra la langosta, exploración, muestreo y control. https://www.gob.mx/cms/uploads/attachment/file/157270/Langosta.pdf

  • Sagili RR, Pankiw T, Zhu-Salzman K (2005) Effect of soybean trypsin inhibitor on hypopharyngeal gland protein content, total midgut protease activity and survival of the honey bee (Apis mellifera L.). J Insect Physiol 51:953–957

    Article  PubMed  CAS  Google Scholar 

  • Sakagami SF, Roubik DW, Zucchi R (1993) Ethology of the robber stingless bee, Lestrimelitta limao (Hymenoptera: Apidae). Sociobiology 21:237–277

    Google Scholar 

  • Sáncez-Bayo F, Goka K (2016) Impacts of pesticides on honey bees. In: Chambo ED (ed) Beekeeping and bee conservation—advances in research. InTech, Croatia. https://doi.org/10.5772/62487

    Chapter  Google Scholar 

  • de Silva-Barros JR (2006) Genetic breeding on the bee Melipona scutellaris (Apidae, Meliponinae). Acta Amazon 36:115–120

    Article  Google Scholar 

  • Simpson RM, Burgess EPJ, Markwick NP (1997) Bacillus thuringiensis Delta-endotoxin binding sites in two lepidóptera. Wiseana spp. and Epiphyas postvittana. J Invertebr Pathol 70:136–142

    Article  PubMed  CAS  Google Scholar 

  • Soares HM, Jacob CRO, Carvalho SM, Nocelli RCF, Malaspina O (2015) Toxicity of Imidacloprid to the stingless bee Scaptotrigona postica Latreille, 1807 (Hymenoptera: Apidae). Bull Environ Contam Toxicol 94:675–680

    Article  PubMed  CAS  Google Scholar 

  • Sommeijer MJ (1999) Beekeeping with stingless bees: a new type of hive. Bee World 80:70–79

    Article  Google Scholar 

  • Soto-Vargas C (2014) Efectos de la inoculación de esporas de Nosema ceranae (Microsporidia) y detección del virus de alas deformes (DWV) en la abeja nativa sin aguijón Melipona beecheii (Hymenoptera: Meliponini) en Yucatán, México. Tesis de Maestría Universidad Autónoma de Yucatán, México

    Google Scholar 

  • Sparks TC, Crouse GD, Durst G (2001) Natural products as insecticides: the biology, biochemistry and quantitative structure activity relationships of spinosyns and spinosoids. Pest Manag Sci 57:896–905

    Article  PubMed  CAS  Google Scholar 

  • Stoner KA, Eitzer BD (2012) Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo). PLoS One 7:e39114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tasei JN (2002) Impact of agrochemicals on non-Apis bees. In: Devillers J, Pham-Delègue MH (eds) Honey bees: estimating the environmental impact of chemicals. Taylor & Francis, London, pp 101–131

    Chapter  Google Scholar 

  • Toledo-Hernández RA, Ruiz-Toledo J, Toledo J, Sánchez D (2016) Effect of three entomopathogenic fungi on three species of stingless bees (Hymenoptera: Apidae) under laboratory conditions. J Econ Entomol 109:1015–1019

    Article  Google Scholar 

  • Tomé HVV, Martins GF, Lima MAP, Campos LAO, Guedes RNC (2012) Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides. PLoS One 7:e38406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomé HVV, Barbosa WF, Martins GF, Guedes RNC (2015a) Spinosad in the native stingless bee Melipona quadrifasciata: regrettable non-target toxicity of a bioinsecticide. Chemosphere 124:103–109

    Article  PubMed  CAS  Google Scholar 

  • Tomé HVV, Barbosa WF, Corrêa AS, Gontijo LM, Martins GF, Guedes RNC (2015b) Reduced-risk insecticides in Neotropical stingless bee species: impact on survival and activity. Ann Appl Biol 167:186–196

    Article  CAS  Google Scholar 

  • Ueira-Vieira C, Almeida LO, Almeida FC d, Amaral IMR, Brandemburgo MAM, Bonetti AM (2015) Scientific note on the first molecular detection of the acute bee paralysis virus in Brazilian stingless bees. Apidologie 46:628–630

    Article  Google Scholar 

  • Valdovinos-Núñez GR, Quezada-Euán JJG, Marrufo-Olivares J (2003) Efecto de la aplicación aérea de permetrina en Apis mellifera y abejas nativas sin aguijón (Hymenoptera: Apidae) en Yucatán, México. In: Memorias XVII Seminario Americano de Apicultura. Aguascalientes, México, pp 147–149

    Google Scholar 

  • Valdovinos-Nuñez GR, Quezada-Euán JJG, Ancona-Xiu P, Moo-Valle H, Carmona A, Ruiz-Sanchez E (2009) Comparative toxicity of pesticides to stingless bees (Hymenoptera: Apidae: Meliponini). J Econ Entomol 102:1737–1742

    Article  PubMed  Google Scholar 

  • Vandame R, Meled M, Colin ME, Belzunces LP (1995) Alteration of the homing-flight in the honey bee Apis mellifera exposed to sublethal dose of deltamethrin. Environ Toxicol Chem 14:855–860

    Article  CAS  Google Scholar 

  • Vandame R, Palacio MA (2010) Preserved honey bee health in Latin America: a fragile equilibrium due to low-intensity agriculture and beekeeping? Apidologie 41:243–255

    Article  Google Scholar 

  • van der Sluijs JP, Simon-Delso N, Goulson D, Maxim L, Bonmatin JM, Belzunces LP (2013) Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr Opin Environ Sustain 5:293–305

    Article  Google Scholar 

  • van Engelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy DR, Pettis JS (2009) Colony collapse disorder: a descriptive study. PLoS One 4:e6481

    Article  CAS  Google Scholar 

  • Venturieri GC, Oliveira PS, Vasconcelos MAM, Mattietto RA (2007) Caracterização, colheita, conservação e embalagem de méis de abelhas indígenas sem ferrão. Embrapa Amazonia Oriental

    Google Scholar 

  • Venturieri GC (2008) A criação de abelhas indígenas sem ferrão. Embrapa Amazonia Oriental

    Google Scholar 

  • Vidal O, López-García J, Rendón-Salinas E (2013) Trends in deforestation and forest degradation after a decade of monitoring in the monarch butterfly biosphere Reserve in Mexico. Conserv Biol 28:177–186

    Article  PubMed  Google Scholar 

  • Villanueva-Gutiérrez R, Roubik DW, Colli-Ucán W, Güemez-Ricalde FJ, Buchmann SL (2013) A critical view of colony losses in managed Mayan honey-making bees (Apidae: Meliponini) in the heart of Zona Maya. J Kansas Entomol Soc 86:352–362

    Article  Google Scholar 

  • Villas-Bôas J (2012) Manual tecnológico Mel de abelhas sem ferrão. Brasilia, DF. Instituto Sociedade, População e Natureza (ISPN). In: Vit P, Pedro SRM, Roubik DW (eds) Pot-honey: a legacy of stingless bees. Springer, New York

    Google Scholar 

  • Vit P, Pedro SRM, Roubik DW (eds) (2013) Pot-honey: a legacy of stingless bees. Springer, New York

    Google Scholar 

  • Waliszewski SM, Caba M, Gómez-Arroyo S, Villalobos-Pietrini R, Martinez A, Valencia-Quintana R, Lozano-Flores ME, Regalado-Torres MA (2013) Niveles de plaguicidas organoclorados en habitantes de México. Rev Int Contam Ambiental 29:121–131

    Google Scholar 

  • Watkins JF II (1982) The army ants of Mexico (Hymenoptera: Formicidae: Ecitoninae). J Kansas Entomol Soc 55:197–247

    Google Scholar 

  • Winfree R, Fox JW, Williams NM, Reilly JR, Cariveau DP (2015) Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol Lett 18:626–635

    Article  PubMed  Google Scholar 

  • Wolff LF, Nava DE (2007) Ocorrência da mosca dos favos Pseudohypocera kerteszi (Diptera: Phoridae) em colméias de abelhas melíferas africanizadas no Rio Grande do Sul. Comunicado Técnico Embrapa Clima Temperado 178:1–4

    Google Scholar 

  • Xavier VM, Message D, Picanço MC, Bacci L, Silva GA, Benevenute JS (2010) Impact of botanical insecticides on indigenous stingless bees (Hymenoptera: Apidae). Sociobiology 56:713–726

    Google Scholar 

  • Xavier VM, Message D, Picanço MC, Chediak M, Santana Júnior PA, Ramos RS, Martins JC (2015) Acute toxicity and sublethal effects of botanical insecticides to honey bees. J Insect Sci 15:137

    Article  CAS  Google Scholar 

  • Yu SJ, Robinson FA, Nation JL (1984) Detoxication capacity in the honey bee, Apis mellifera L. Pest Biochem Physiol 22:360–368

    Article  CAS  Google Scholar 

  • Zayed A, Packer L (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc Nat Acad Sci USA 102:10742–10746

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quezada-Euán, J.J.G. (2018). Managing and Preserving Stingless Bees. In: Stingless Bees of Mexico. Springer, Cham. https://doi.org/10.1007/978-3-319-77785-6_8

Download citation

Publish with us

Policies and ethics