Skip to main content

Stem Cell Transplantation for Primary Immunodeficiency

  • Chapter
  • First Online:
Management of Infections in the Immunocompromised Host

Abstract

Primary immunodeficiency diseases (PID) are a group of heterogeneous inherited disorders affecting the development and function of the innate and acquired immune system. The disorders are characterized by increased susceptibility to recurrent and severe infections, autoimmunity and in some cases malignancies. Allogeneic haematopoietic stem cell transplant (HSCT), and in some cases gene therapy, is the only curative approach for many of these disorders. With the expanding field of molecular genetics, new immune disorders are being identified, but the role of HSCT or other therapy in these disorders remains to be determined. This chapter will review the current indications for HSCT in PID and will examine the specific challenges associated with HSCT in (1) severe combined immunodeficiency (SCID) where the landscape is changing due the introduction of newborn screening; (2) other combined immune deficiencies, some of which have only very recently been described; and (3) phagocytic and haemophagocytic cell disorders. The role of alternative therapies including gene therapy and thymic transplantation will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADA:

Adenosine deaminase

APDS:

Activated PI3Kδ syndrome

ATG:

Anti-thymocyte globulin

CGD:

Chronic granulomatous disease

CTLs:

Cytotoxic T lymphocytes

DLI:

Donor lymphocyte infusion

DOCK8:

Dedicator of cytokinesis 8

EBV:

Epstein-Barr virus

FHLH:

Familial haemophagocytic lymphohistiocytosis

GvHD:

Graft versus host disease

HLA:

Human leukocyte antigen

HLH:

Haemophagocytic lymphohistiocytosis

HSCT:

Haematopoietic stem cell transplant

iC9-T:

Inducible human caspase 9

LAD:

Leukocyte adhesion deficiency type 1

MAC:

Myeloablative conditioning

MHC class II:

Major histocompatibility complex class II

MIC:

Minimal intensity conditioning

MMFD:

Mismatched family donor

MRD:

Matched related donor

MSD:

Matched sibling donor

mTOR:

Mammalian target of rapamycin

MUD:

Matched unrelated donor

NBS:

Newborn screening

NKT:

NK+ T cells

OS:

Overall survival

PBSC:

Peripheral blood stem cells

PEG-ADA:

Polyethylene glycol-conjugated adenosine deaminase

PI3K:

Phosphatidylinositol-3 kinase

PID:

Primary immunodeficiency diseases

RIC:

Reduced intensity conditioning

SCETIDE:

Stem cell transplant for immunodeficiencies in Europe

SCID:

Severe combined immunodeficiency

TCR:

T-cell receptor

TRECs:

T-cell receptor excision circles

TRM:

Transplant-related mortality

UCBT:

Umbilical cord blood stem cell transplantation

WAS:

Wiskott-Aldrich syndrome

XIAP:

X-linked inhibitor of apoptosis

XLP:

X-linked lymphoproliferative disease

References

  1. Schultz RK, Baker KS, Boelens JJ, Bollard CM, Egeler RM, Cowan M, et al. Challenges and opportunities for international cooperative studies in pediatric hematopoeitic cell transplantation: priorities of the Westhafen Intercontinental Group. Biol Blood Marrow Transplant. 2013;19(9):1279–87.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, Cunningham-Rundles C, et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2014;5:162.

    PubMed  PubMed Central  Google Scholar 

  3. Hassan A, Lee P, Maggina P, Xu JH, Moreira D, Slatter M, et al. Host natural killer immunity is a key indicator of permissiveness for donor cell engraftment in patients with severe combined immunodeficiency. J Allergy Clin Immunol. 2014;133(6):1660–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gennery AR, Slatter MA, Grandin L, Taupin P, Cant AJ, Veys P, et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol. 2010;126(3):602–10. e1–11

    Article  PubMed  Google Scholar 

  5. Fernandes JF, Rocha V, Labopin M, Neven B, Moshous D, Gennery AR, et al. Transplantation in patients with SCID: mismatched related stem cells or unrelated cord blood? Blood. 2012;119(12):2949–55.

    Article  CAS  PubMed  Google Scholar 

  6. Veys P, Danby R, Vora A, Slatter M, Wynn R, Lawson S, et al. UK experience of unrelated cord blood transplantation in paediatric patients. Br J Haematol. 2016;172(3):482–6.

    Article  PubMed  Google Scholar 

  7. Dvorak CC, Hassan A, Slatter MA, Honig M, Lankester AC, Buckley RH, et al. Comparison of outcomes of hematopoietic stem cell transplantation without chemotherapy conditioning by using matched sibling and unrelated donors for treatment of severe combined immunodeficiency. J Allergy Clin Immunol. 2014;134(4):935–43. e15

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pai SY, Logan BR, Griffith LM, Buckley RH, Parrott RE, Dvorak CC, et al. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. N Engl J Med. 2014;371(5):434–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gaspar HB, Qasim W, Davies EG, Rao K, Amrolia PJ, Veys P. How I treat severe combined immunodeficiency. Blood. 2013;122(23):3749–58.

    Article  CAS  PubMed  Google Scholar 

  10. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest. 2008;118(9):3143–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiesa R, Gilmour K, Qasim W, Adams S, Worth AJ, Zhan H, et al. Omission of in vivo T-cell depletion promotes rapid expansion of naive CD4+ cord blood lymphocytes and restores adaptive immunity within 2 months after unrelated cord blood transplant. Br J Haematol. 2012;156(5):656–66.

    Article  CAS  PubMed  Google Scholar 

  12. Locatelli F, Bauquet A, Palumbo G, Moretta F, Bertaina A. Negative depletion of alpha/beta+ T cells and of CD19+ B lymphocytes: a novel frontier to optimize the effect of innate immunity in HLA-mismatched hematopoietic stem cell transplantation. Immunol Lett. 2013;155(1–2):21–3.

    Article  CAS  PubMed  Google Scholar 

  13. Bertaina A, Merli P, Rutella S, Pagliara D, Bernardo ME, Masetti R, et al. HLA-haploidentical stem cell transplantation after removal of alphabeta+ T and B cells in children with nonmalignant disorders. Blood. 2014;124(5):822–6.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou X, Di Stasi A, Tey SK, Krance RA, Martinez C, Leung KS, et al. Long-term outcome after haploidentical stem cell transplant and infusion of T cells expressing the inducible caspase 9 safety transgene. Blood. 2014;123(25):3895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grosso D, Carabasi M, Filicko-O'Hara J, Kasner M, Wagner JL, Colombe B, et al. A 2-step approach to myeloablative haploidentical stem cell transplantation: a phase 1/2 trial performed with optimized T-cell dosing. Blood. 2011;118(17):4732–9.

    Article  CAS  PubMed  Google Scholar 

  16. McCurdy SR, Kanakry JA, Showel MM, Tsai HL, Bolanos-Meade J, Rosner GL, et al. Risk-stratified outcomes of nonmyeloablative HLA-haploidentical BMT with high-dose posttransplantation cyclophosphamide. Blood. 2015;125(19):3024–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robinson TM, O'Donnell PV, Fuchs EJ, Luznik L. Haploidentical bone marrow and stem cell transplantation: experience with post-transplantation cyclophosphamide. Semin Hematol. 2016;53(2):90–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ouederni M, Mellouli F, Khaled MB, Kaabi H, Picard C, Bejaoui M. Successful haploidentical stem cell transplantation with post-transplant cyclophosphamide in a severe combined immune deficiency patient: a first report. J Clin Immunol. 2016;36:437–40.

    Article  PubMed  Google Scholar 

  19. Brown L, Xu-Bayford J, Allwood Z, Slatter M, Cant A, Davies EG, et al. Neonatal diagnosis of severe combined immunodeficiency leads to significantly improved survival outcome: the case for newborn screening. Blood. 2011;117(11):3243–6.

    Article  CAS  PubMed  Google Scholar 

  20. Kobrynski L. Newborn screening for severe combined immune deficiency (technical and political aspects). Curr Opin Allergy Clin Immunol. 2015;15(6):539–46.

    Article  CAS  PubMed  Google Scholar 

  21. Gaspar HB, Hammarstrom L, Mahlaoui N, Borte M, Borte S. The case for mandatory newborn screening for severe combined immunodeficiency (SCID). J Clin Immunol. 2014;34(4):393–7.

    Article  CAS  PubMed  Google Scholar 

  22. Clement MC, Mahlaoui N, Mignot C, Le Bihan C, Rabetrano H, Hoang L, et al. Systematic neonatal screening for severe combined immunodeficiency and severe T-cell lymphopenia: analysis of cost-effectiveness based on French real field data. J Allergy Clin Immunol. 2015;135(6):1589–93.

    Article  PubMed  Google Scholar 

  23. de Felipe B, Olbrich P, Lucenas JM, Delgado-Pecellin C, Pavon-Delgado A, Marquez J, et al. Prospective neonatal screening for severe T- and B-lymphocyte deficiencies in Seville. Pediatr Allergy Immunol. 2016;27(1):70–7.

    Article  PubMed  Google Scholar 

  24. de Pagter AP, Bredius RG, Kuijpers TW, Tramper J, van der Burg M, van Montfrans J, et al. Overview of 15-year severe combined immunodeficiency in the Netherlands: towards newborn blood spot screening. Eur J Pediatr. 2015;174(9):1183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312(7):729–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van der Spek J, Groenwold RH, van der Burg M, van Montfrans JM. TREC based newborn screening for severe combined immunodeficiency disease: a systematic review. J Clin Immunol. 2015;35(4):416–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chan K, Puck JM. Development of population-based newborn screening for severe combined immunodeficiency. J Allergy Clin Immunol. 2005;115(2):391–8.

    Article  PubMed  Google Scholar 

  28. Rao K, Amrolia PJ, Jones A, Cale CM, Naik P, King D, et al. Improved survival after unrelated donor bone marrow transplantation in children with primary immunodeficiency using a reduced-intensity conditioning regimen. Blood. 2005;105(2):879–85.

    Article  CAS  PubMed  Google Scholar 

  29. Chiesa R, Veys P. Reduced-intensity conditioning for allogeneic stem cell transplant in primary immune deficiencies. Expert Rev Clin Immunol. 2012;8(3):255–66. quiz 67

    Article  CAS  PubMed  Google Scholar 

  30. Satwani P, Cooper N, Rao K, Veys P, Amrolia P. Reduced intensity conditioning and allogeneic stem cell transplantation in childhood malignant and nonmalignant diseases. Bone Marrow Transplant. 2007;41(2):173–82.

    Article  CAS  PubMed  Google Scholar 

  31. DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de Saint Basile G. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature. 1993;361(6412):541–3.

    Article  CAS  PubMed  Google Scholar 

  32. Korthauer U, Graf D, Mages HW, Briere F, Padayachee M, Malcolm S, et al. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature. 1993;361(6412):539–41.

    Article  CAS  PubMed  Google Scholar 

  33. Cunningham CK, Bonville CA, Ochs HD, Seyama K, John PA, Rotbart HA, et al. Enteroviral meningoencephalitis as a complication of X-linked hyper IgM syndrome. J Pediatr. 1999;134(5):584–8.

    Article  CAS  PubMed  Google Scholar 

  34. Gennery AR, Khawaja K, Veys P, Bredius RG, Notarangelo LD, Mazzolari E, et al. Treatment of CD40 ligand deficiency by hematopoietic stem cell transplantation: a survey of the European experience, 1993–2002. Blood. 2004;103(3):1152–7.

    Article  CAS  PubMed  Google Scholar 

  35. Deau MC, Heurtier L, Frange P, Suarez F, Bole-Feysot C, Nitschke P, et al. A human immunodeficiency caused by mutations in the PIK3R1 gene. J Clin Invest. 2014;124(9):3923–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Angulo I, Vadas O, Garcon F, Banham-Hall E, Plagnol V, Leahy TR, et al. Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science. 2013;342(6160):866–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nat Immunol. 2014;15(1):88–97.

    Article  CAS  PubMed  Google Scholar 

  38. Nademi Z, Slatter MA, Dvorak CC, Neven B, Fischer A, Suarez F, et al. Hematopoietic stem cell transplant in patients with activated PI3K delta syndrome. J Allergy Clin Immunol. 2017;139(3):1046–9.

    Article  PubMed  Google Scholar 

  39. Small TN, Qasim W, Friedrich W, Chiesa R, Bleesing JJ, Scurlock A, et al. Alternative donor SCT for the treatment of MHC class II deficiency. Bone Marrow Transplant. 2013;48(2):226–32.

    Article  CAS  PubMed  Google Scholar 

  40. Ouederni M, Vincent QB, Frange P, Touzot F, Scerra S, Bejaoui M, et al. Major histocompatibility complex class II expression deficiency caused by a RFXANK founder mutation: a survey of 35 patients. Blood. 2011;118(19):5108–18.

    Article  CAS  PubMed  Google Scholar 

  41. Saleem MA, Arkwright PD, Davies EG, Cant AJ, Veys PA. Clinical course of patients with major histocompatibility complex class II deficiency. Arch Dis Child. 2000;83(4):356–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. J Allergy Clin Immunol. 2018 Jan 31. pii: S0091-6749(18)30083-6. doi: https://doi.org/10.1016/j.jaci.2017.10.051. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  43. Aydin SE, Kilic SS, Aytekin C, Kumar A, Porras O, Kainulainen L, et al. DOCK8 deficiency: clinical and immunological phenotype and treatment options – a review of 136 patients. J Clin Immunol. 2015;35(2):189–98.

    Article  CAS  PubMed  Google Scholar 

  44. Al-Herz W, Chu JI, van der Spek J, Raghupathy R, Massaad MJ, Keles S, et al. Hematopoietic stem cell transplantation outcomes for 11 patients with dedicator of cytokinesis 8 deficiency. J Allergy Clin Immunol. 2016;138:852–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Aydin S, Freeman AF, Su H, Hickstein D, Pai S-Y, Geha R, et al. HSCT for DOCK8 deficiency – an international study on 74 patients. Biol Blood Marrow Transplant. 2016;22(3, Supplement):S103–S4.

    Article  Google Scholar 

  46. Jin Y, Mazza C, Christie JR, Giliani S, Fiorini M, Mella P, et al. Mutations of the Wiskott-Aldrich syndrome protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation. Blood. 2004;104(13):4010–9.

    Article  CAS  PubMed  Google Scholar 

  47. Moratto D, Giliani S, Bonfim C, Mazzolari E, Fischer A, Ochs HD, et al. Long-term outcome and lineage-specific chimerism in 194 patients with Wiskott-Aldrich syndrome treated by hematopoietic cell transplantation in the period 1980–2009: an international collaborative study. Blood. 2011;118(6):1675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ozsahin H, Cavazzana-Calvo M, Notarangelo LD, Schulz A, Thrasher AJ, Mazzolari E, et al. Long-term outcome following hematopoietic stem-cell transplantation in Wiskott-Aldrich syndrome: collaborative study of the European Society for Immunodeficiencies and European Group for blood and marrow transplantation. Blood. 2008;111(1):439–45.

    Article  CAS  PubMed  Google Scholar 

  49. Shin CR, Kim MO, Li D, Bleesing JJ, Harris R, Mehta P, et al. Outcomes following hematopoietic cell transplantation for Wiskott-Aldrich syndrome. Bone Marrow Transplant. 2012;47(11):1428–35.

    Article  CAS  PubMed  Google Scholar 

  50. Slatter MA, Rao K, Amrolia P, Flood T, Abinun M, Hambleton S, et al. Treosulfan-based conditioning regimens for hematopoietic stem cell transplantation in children with primary immunodeficiency: United Kingdom experience. Blood. 2011;117(16):4367–75.

    Article  CAS  PubMed  Google Scholar 

  51. Worth AJ, Thrasher AJ. Current and emerging treatment options for Wiskott-Aldrich syndrome. Expert Rev Clin Immunol. 2015;11(9):1015–32.

    Article  CAS  PubMed  Google Scholar 

  52. Boztug K, Schmidt M, Schwarzer A, Banerjee PP, Diez IA, Dewey RA, et al. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med. 2010;363(20):1918–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Braun CJ, Boztug K, Paruzynski A, Witzel M, Schwarzer A, Rothe M, et al. Gene therapy for Wiskott-Aldrich syndrome – long-term efficacy and genotoxicity. Sci Transl Med. 2014;6(227):227ra33.

    Article  CAS  PubMed  Google Scholar 

  54. Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science. 2013;341(6148):1233151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hacein-Bey Abina S, Gaspar HB, Blondeau J, Caccavelli L, Charrier S, Buckland K, et al. Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome. JAMA. 2015;313(15):1550–63.

    Article  CAS  PubMed  Google Scholar 

  56. Seger RA, Gungor T, Belohradsky BH, Blanche S, Bordigoni P, Di Bartolomeo P, et al. Treatment of chronic granulomatous disease with myeloablative conditioning and an unmodified hemopoietic allograft: a survey of the European experience, 1985–2000. Blood. 2002;100(13):4344–50.

    Article  CAS  PubMed  Google Scholar 

  57. Soncini E, Slatter MA, Jones LB, Hughes S, Hodges S, Flood TJ, et al. Unrelated donor and HLA-identical sibling haematopoietic stem cell transplantation cure chronic granulomatous disease with good long-term outcome and growth. Br J Haematol. 2009;145(1):73–83.

    Article  CAS  PubMed  Google Scholar 

  58. Schuetz C, Hoenig M, Gatz S, Speth F, Benninghoff U, Schulz A, et al. Hematopoietic stem cell transplantation from matched unrelated donors in chronic granulomatous disease. Immunol Res. 2009;44(1–3):35–41.

    Article  CAS  PubMed  Google Scholar 

  59. Tewari P, Martin PL, Mendizabal A, Parikh SH, Page KM, Driscoll TA, et al. Myeloablative transplantation using either cord blood or bone marrow leads to immune recovery, high long-term donor chimerism and excellent survival in chronic granulomatous disease. Biol Blood Marrow Transplant. 2012;18(9):1368–77.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ahlin A, Fugelang J, de Boer M, Ringden O, Fasth A, Winiarski J. Chronic granulomatous disease-haematopoietic stem cell transplantation versus conventional treatment. Acta Paediatr. 2013;102(11):1087–94.

    PubMed  Google Scholar 

  61. Cole T, Pearce MS, Cant AJ, Cale CM, Goldblatt D, Gennery AR. Clinical outcome in children with chronic granulomatous disease managed conservatively or with hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2013;132(5):1150–5.

    Article  PubMed  Google Scholar 

  62. Martinez CA, Shah S, Shearer WT, Rosenblatt HM, Paul ME, Chinen J, et al. Excellent survival after sibling or unrelated donor stem cell transplantation for chronic granulomatous disease. J Allergy Clin Immunol. 2012;129(1):176–83.

    Article  PubMed  Google Scholar 

  63. Gungor T, Teira P, Slatter M, Stussi G, Stepensky P, Moshous D, et al. Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease: a prospective multicentre study. Lancet (London, England). 2014;383(9915):436–48.

    Article  CAS  Google Scholar 

  64. Uzel G, Orange JS, Poliak N, Marciano BE, Heller T, Holland SM. Complications of tumor necrosis factor-alpha blockade in chronic granulomatous disease-related colitis. Clin Infect Dis. 2010;51(12):1429–34.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Nikolajeva O, Mijovic A, Hess D, Tatam E, Amrolia P, Chiesa R, et al. Single-donor granulocyte transfusions for improving the outcome of high-risk pediatric patients with known bacterial and fungal infections undergoing stem cell transplantation: a 10-year single-center experience. Bone Marrow Transplant. 2015;50(6):846–9.

    Article  CAS  PubMed  Google Scholar 

  66. Parta M, Hilligoss D, Kelly C, Kwatemaa N, Theobald N, Malech H, et al. Haploidentical hematopoietic cell transplantation with post-transplant cyclophosphamide in a patient with chronic granulomatous disease and active infection: a first report. J Clin Immunol. 2015;35(7):675–80.

    Article  CAS  PubMed  Google Scholar 

  67. Qasim W, Cavazzana-Calvo M, Davies EG, Davis J, Duval M, Eames G, et al. Allogeneic hematopoietic stem-cell transplantation for leukocyte adhesion deficiency. Pediatrics. 2009;123(3):836–40.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hamidieh AA, Pourpak Z, Hosseinzadeh M, Fazlollahi MR, Alimoghaddam K, Movahedi M, et al. Reduced-intensity conditioning hematopoietic SCT for pediatric patients with LAD-1: clinical efficacy and importance of chimerism. Bone Marrow Transplant. 2012;47(5):646–50.

    Article  CAS  PubMed  Google Scholar 

  69. Bauer TR Jr, Hickstein DD. Gene therapy for leukocyte adhesion deficiency. Curr Opin Mol Ther. 2000;2(4):383–8.

    PubMed  CAS  Google Scholar 

  70. Hunter MJ, Tuschong LM, Fowler CJ, Bauer TR Jr, Burkholder TH, Hickstein DD. Gene therapy of canine leukocyte adhesion deficiency using lentiviral vectors with human CD11b and CD18 promoters driving canine CD18 expression. Mol Ther. 2011;19(1):113–21.

    Article  CAS  PubMed  Google Scholar 

  71. Nelson EJ, Tuschong LM, Hunter MJ, Bauer TR Jr, Burkholder TH, Hickstein DD. Lentiviral vectors incorporating a human elongation factor 1alpha promoter for the treatment of canine leukocyte adhesion deficiency. Gene Ther. 2010;17(5):672–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Leon-Rico D, Aldea M, Sanchez-Baltasar R, Mesa-Nunez C, Record J, Burns SO, et al. Lentiviral vector-mediated correction of a mouse model of leukocyte adhesion deficiency type I. Hum Gene Ther. 2016;27:668–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bauer TR Jr, Allen JM, Hai M, Tuschong LM, Khan IF, Olson EM, et al. Successful treatment of canine leukocyte adhesion deficiency by foamy virus vectors. Nat Med. 2008;14(1):93–7.

    Article  CAS  PubMed  Google Scholar 

  74. Hsu AP, McReynolds LJ, Holland SM. GATA2 deficiency. Curr Opin Allergy Clin Immunol. 2015;15(1):104–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Grossman J, Cuellar-Rodriguez J, Gea-Banacloche J, Zerbe C, Calvo K, Hughes T, et al. Nonmyeloablative allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Biol Blood Marrow Transplant. 2014;20(12):1940–8.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Henter JI, Horne A, Arico M, Egeler RM, Filipovich AH, Imashuku S, et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48(2):124–31.

    Article  PubMed  Google Scholar 

  77. Chellapandian D, Das R, Zelley K, Wiener SJ, Zhao H, Teachey DT, et al. Treatment of Epstein Barr virus-induced haemophagocytic lymphohistiocytosis with rituximab-containing chemo-immunotherapeutic regimens. Br J Haematol. 2013;162(3):376–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cooper N, Rao K, Gilmour K, Hadad L, Adams S, Cale C, et al. Stem cell transplantation with reduced-intensity conditioning for hemophagocytic lymphohistiocytosis. Blood. 2006;107(3):1233–6.

    Article  CAS  PubMed  Google Scholar 

  79. Marsh RA, Vaughn G, Kim MO, Li D, Jodele S, Joshi S, et al. Reduced-intensity conditioning significantly improves survival of patients with hemophagocytic lymphohistiocytosis undergoing allogeneic hematopoietic cell transplantation. Blood. 2010;116(26):5824–31.

    Article  CAS  PubMed  Google Scholar 

  80. Nishi M, Nishimura R, Suzuki N, Sawada A, Okamura T, Fujita N, et al. Reduced-intensity conditioning in unrelated donor cord blood transplantation for familial hemophagocytic lymphohistiocytosis. Am J Hematol. 2012;87(6):637–9.

    Article  PubMed  Google Scholar 

  81. Marsh RA, Rao K, Satwani P, Lehmberg K, Muller I, Li D, et al. Allogeneic hematopoietic cell transplantation for XIAP deficiency: an international survey reveals poor outcomes. Blood. 2013;121(6):877–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Worth AJ, Nikolajeva O, Chiesa R, Rao K, Veys P, Amrolia PJ. Successful stem cell transplant with antibody-based conditioning for XIAP deficiency with refractory hemophagocytic lymphohistiocytosis. Blood. 2013;121(24):4966–8.

    Article  CAS  PubMed  Google Scholar 

  83. Janda A, Sedlacek P, Honig M, Friedrich W, Champagne M, Matsumoto T, et al. Multicenter survey on the outcome of transplantation of hematopoietic cells in patients with the complete form of DiGeorge anomaly. Blood. 2010;116(13):2229–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Markert ML, Devlin BH, McCarthy EA. Thymus transplantation. Clin Immunol. 2010;135(2):236–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Veys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva, J., Booth, C., Veys, P. (2018). Stem Cell Transplantation for Primary Immunodeficiency. In: Segal, B. (eds) Management of Infections in the Immunocompromised Host. Springer, Cham. https://doi.org/10.1007/978-3-319-77674-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77674-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77672-9

  • Online ISBN: 978-3-319-77674-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics