Skip to main content

Influence of Grain Size on Work-Hardening Behavior of Fe-24Ni-0.3C Metastable Austenitic Steel

  • Conference paper
  • First Online:
Proceedings of the International Conference on Martensitic Transformations: Chicago

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

In this study, the effect of grain size on the work-hardening behavior of Fe-24Ni-0.3C metastable austenitic steel was investigated by the use of in situ neutron diffraction during tensile tests in Japan Proton Accelerator Research Complex (J-PARC). The effect of grain size on the work-hardening behavior was considered from viewpoints of martensite formation and stress partitioning between different phases. The result revealed that when the grain size changed within the coarse grained region the influence of the grain size on the stress partitioning was relatively small, thus the work-hardening behavior was mainly determined by the increasing rate of martensite volume fraction. On the other hand, when the grain size decreased down to ultrafine grained scale, the internal stress (phase stress) in martensite significantly increased, which contributed to the increasing work-hardening rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zackay VF, Parker ER, Fahr D et al (1967) ASM Trans Quart 60(2):252–259

    CAS  Google Scholar 

  2. Wakita M, Adachi Y, Tomota Y (2007) Trans Tech Publ 539:4351–4356

    Google Scholar 

  3. Edmonds DV, He K, Rizzo FC et al (2006) Mater Sci Eng A 438:25–34

    Article  Google Scholar 

  4. Speer J, Matlock DK, De Cooman BC et al (2003) Acta Mater 51(9):2611–2622

    Article  CAS  Google Scholar 

  5. Grässel O, Krüger L, Frommeyer G et al (2000) Int J Plast 16(10):1391–1409

    Article  Google Scholar 

  6. Berrenberg F, Haase C, Barrales-Mora LA et al (2017) Mater Sci Eng A 681:56–64

    Article  CAS  Google Scholar 

  7. Iwamoto T, Tsuta T (2000) Int J Plast 16(7):791–804

    Article  CAS  Google Scholar 

  8. Jacques P, Furnémont Q, Mertens A et al (2001) Philos Mag A 81(7):1789–1812

    Article  CAS  Google Scholar 

  9. De AK, Speer JG, Matlock DK et al (2006) Metall Mater Trans A 37(6):1875–1886

    Article  Google Scholar 

  10. Tomota Y, Tokuda H, Adachi Y et al (2004) Acta Mater 52(20):5737–5745

    Article  CAS  Google Scholar 

  11. Tomota Y, Lukáš P, Neov D et al (2003) Acta Mater 51(3):805–817

    Article  CAS  Google Scholar 

  12. Harjo S, Tomota Y, Lukáš P et al (2001) Acta Mater 49(13):2471–2479

    Article  CAS  Google Scholar 

  13. Daymond MR, Bourke MAM, Von Dreele RB et al (1997) J Appl Phys 82(4):1554–1562

    Article  CAS  Google Scholar 

  14. Hutchings MT, Krawitz AD (eds) (2012) Measurement of residual and applied stress using neutron diffraction, vol 216. Springer Science & Business Media

    Google Scholar 

  15. De AK, Murdock DC, Mataya MC et al (2004) Scr Mater 50(12):1445–1449

    Article  CAS  Google Scholar 

  16. Takaki S, Fukunaga K, Syarif J et al (2004) Mater Trans 45(7):2245–2251

    Article  CAS  Google Scholar 

  17. Chokshi AH, Rosen A, Karch J et al (1989) Scr Metall 23(10):1679–1683

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The neutron experiment at the Materials and Life Science Experimental Facility of the J-PARC was performed under a user program (Proposal No. 2016E0003 and 2017A0136). This work was financially supported by the Elements Strategy Initiative for Structural Materials (ESISM) and the Grant-in-Aid for Scientific Research (S) (No. JP15H05767) both through the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. One of the authors (W.Q.Mao) was financially supported by China Scholarship Council (CSC), China. The supports are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Q. Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mao, W.Q. et al. (2018). Influence of Grain Size on Work-Hardening Behavior of Fe-24Ni-0.3C Metastable Austenitic Steel. In: Stebner, A., Olson, G. (eds) Proceedings of the International Conference on Martensitic Transformations: Chicago. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-76968-4_15

Download citation

Publish with us

Policies and ethics