Skip to main content

Computational Methods

  • Chapter
  • First Online:
Epitaxial Growth of III-Nitride Compounds

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 269))

  • 677 Accesses

Abstract

Computational approach to investigate epitaxial growth of III-nitride compounds is primarily concerned with the numerical computation of electronic structures by ab initio calculations and semi-empirical atomistic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)

    Article  Google Scholar 

  2. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)

    Article  Google Scholar 

  3. J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981)

    Article  CAS  Google Scholar 

  4. D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980)

    Article  CAS  Google Scholar 

  5. J.P. Perdew, in Electronic Structure of Solids ‘91, ed. by P. Zeische, H. Eschrig (Academic, Berlin, 1991)

    Google Scholar 

  6. J.P. Perdew, K, Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3365 (1996); 78, 1396 (1997)

    Google Scholar 

  7. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098 (1988)

    Article  CAS  Google Scholar 

  8. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  9. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003)

    Article  CAS  Google Scholar 

  10. M.T. Yin, M.L. Cohen, Theory of static structural properties, crystal stability, and phase transformations: application to Si and Ge. Phys. Rev. B 26, 5668 (1982)

    Article  CAS  Google Scholar 

  11. O.H. Nielsen, R.M. Martin, Stresses in semiconductors: ab initio calculations on Si, Ge, and GaAs. Phys. Rev. B 32, 3792 (1985)

    Article  CAS  Google Scholar 

  12. R.W. Godby, M. Schlüter, L.J. Sham, Accurate exchange-correlation potential for silicon and its discontinuity on addition of an electron. Phys. Rev. Lett. 56, 2415 (1986)

    Article  CAS  Google Scholar 

  13. M.S. Hybertsen, S.G. Louie, First-principles theory of quasiparticles: calculation of band gaps in semiconductors and insulators. Phys. Rev. Lett. 55, 1418 (1985)

    Article  CAS  Google Scholar 

  14. M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986)

    Article  CAS  Google Scholar 

  15. A. Baldereschi, Mean-value point in the Brillouin zone. Phys. Rev. B 7, 5212 (1973)

    Article  CAS  Google Scholar 

  16. D.J. Chadi, M.L. Cohen, Special points in the Brillouin zone. Phys. Rev. B 8, 5747 (1973)

    Article  Google Scholar 

  17. J. Ihm, A. Zunger, M.L. Cohen, Momentum-space formalism for the total energy of solids. J. Phys. C: Solid State Phys. 12, 4409 (1979)

    Article  CAS  Google Scholar 

  18. M.C. Payne, M.P. Teter, D.C. Allen, T.A. Alrias, J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992)

    Article  CAS  Google Scholar 

  19. N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991)

    Article  CAS  Google Scholar 

  20. C.P. Kerker, Non-singular atomic pseudopotentials for solid state applications. J. Phys. C13, L189 (1980)

    Google Scholar 

  21. D.R. Hamman, M. Schlüter, C. Chiang, Norm-conserving pseudopotentials. Phys. Rev. Lett. 43, 1494 (1979)

    Article  Google Scholar 

  22. G.B. Bachelet, D.R. Hamman, M. Schlüter, Pseudopotentials that work: From H to Pu. Phys. Rev. B 26, 4199 (1982)

    Article  CAS  Google Scholar 

  23. L. Kleinman, D.M. Bylander, Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48, 1425 (1982)

    Article  CAS  Google Scholar 

  24. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990)

    Article  CAS  Google Scholar 

  25. P.N. Keating, Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 145, 637 (1966)

    Article  CAS  Google Scholar 

  26. R.M. Martin, Elastic properties of ZnS structure semiconductors. Phys. Rev. B 1, 4005 (1970)

    Article  Google Scholar 

  27. F.H. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262 (1985)

    Article  CAS  Google Scholar 

  28. G.C. Abell, Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys. Rev. B 31, 6184 (1984)

    Article  Google Scholar 

  29. J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1988)

    Article  CAS  Google Scholar 

  30. K.E. Khor, S. Das, Sarma, “Proposed universal interatomic potential for elemental tetrahedrally bonded semiconductors”. Phys. Rev. B 38, 3318 (1988)

    Article  CAS  Google Scholar 

  31. W.H. Moon, M.S. Son, H.J. Hwang, Molecular-dynamics simulation of structural properties of cubic boron nitride. Phys. Rev. B 336, 329 (2003)

    Article  CAS  Google Scholar 

  32. W.H. Moon, H.J. Hwang, A modified Stillinger-Weber empirical potential for boron nitride. Appl. Surf. Sci. 239, 376 (2005)

    Article  CAS  Google Scholar 

  33. S.Q. Wang, Y.M. Wang, H.Q. Ye, A theoretical study on various models for the domain boundaries in epitaxial GaN films. Appl. Phys. A 70, 475 (2000)

    Article  CAS  Google Scholar 

  34. N. Aichoune, V. Potin, P. Ruteran, A. Hairie, G. Nouet, E. Paumier, An empirical potential for the calculation of the atomic structure of extended defects in wurtzite GaN. Comp. Mat. Sci. 17, 380 (2000)

    Article  CAS  Google Scholar 

  35. A. Béré, A. Serra, Atomic structure of dislocation cores in GaN. Phys. Rev. B 65, 205323 (2002)

    Article  Google Scholar 

  36. J. Nord, K. Albe, P. Erhart, K. Nordlund, Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride. J. Phys.: Condens. Matter 15, 5649 (2003)

    CAS  Google Scholar 

  37. T. Ito, Recent progress in computer aided materials design for compound semiconductors. J. Appl. Phys. 77, 4845 (1995)

    Article  CAS  Google Scholar 

  38. T. Ito, T. Akiyama, and K. Nakamura, Systematic approach to developing empirical interatomic potentials for III–N semiconductors. Jpn. J. Appl. Phys. 55, 05FM02 (2016)

    Google Scholar 

  39. M.Z. Bazant, E. Kaxiras, J.F. Justo, Environment-dependent interatomic potential for bulk silicon. Phys. Rev. B 56, 8542 (1997)

    Article  CAS  Google Scholar 

  40. Y. Takemoto, T. Akiyama, K. Nakamura, T. Ito, Theoretical study for crystal structure deformation in ANB8-N compounds. e-J. Surf. Sci. Nanotechnol. 12, 79 (2014)

    Article  Google Scholar 

  41. M.B. Kaunoun, A.E. Merad, G. Merad, J. Cibert, H. Aourag, Prediction study of elastic properties under pressure effect for zincblende BN, AlN, GaN and InN. Solid-State Electron. 48, 1601 (2004)

    Article  Google Scholar 

  42. M. Grimsditch, E.S. Zouboulis, A. Polian, Elastic constants of boron nitride. J. Appl. Phys. 76, 832 (1994)

    Article  CAS  Google Scholar 

  43. A. Trampert, O. Brandt, K.H. Ploog, Crystal structure of group III Nitrides, in Semiconductors and Semimetals, ed. by J.I. Pankove, T.D. Mouskas, vol. 50, Chap. 7 (Academic Press, San Diego, 1998)

    Google Scholar 

  44. M.E. Sherwin, T.J. Drummond, Predicted elastic constants and critical layer thicknesses for cubic phase AlN, GaN, and InN on β-SiC. J. Appl. Phys. 69, 8423 (1991)

    Article  CAS  Google Scholar 

  45. T. Ito, T. Akiyama, K. Nakamura, Empirical interatomic potential approach to the stability of graphitic structure in ANB8-N compounds. Jpn. J. Appl. Phys. 53, 110304 (2014)

    Article  Google Scholar 

  46. W.A. Harrison, Electronic Structure and the Properties of Solids, Chap. 8 (W. H. Freeman & Company, San Francisco, 1980)

    Google Scholar 

  47. S. Muramatsu, M. Kitamura, Simple expressions for elastic constants c11, c12, and c44 and internal displacements of semiconductors. J. Appl. Phys. 73, 4270 (1993)

    Article  CAS  Google Scholar 

  48. T. Ito, Simple criterion for wurtzite-zinc-blende polytypism in semiconductors. Jpn. J. Appl. Phys. 37, L1217 (1998)

    Article  CAS  Google Scholar 

  49. C.-Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Zinc-blende–wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086 (1992)

    Article  CAS  Google Scholar 

  50. J.C. Phillips, Ionicity of the Chemical Bond in Crystals. Rev. Mod. Phys. 42, 317 (1970)

    Article  CAS  Google Scholar 

  51. T. Ito, T. Akiyama, K. Nakamura, Simple systematization of structural stability for ANB8-N compounds. Jpn. J. Appl. Phys. 46, 345 (2007)

    Article  CAS  Google Scholar 

  52. T. Ito, T. Akiyama, K. Nakamura, A simple approach to the polytypism in SiC. J. Cryst. Growth 362, 207 (2013)

    Article  CAS  Google Scholar 

  53. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  CAS  Google Scholar 

  54. Y. Kangawa, T. Ito, A. Taguchi, K. Shiraishi, T. Ohachi, A new theoretical approach to adsorption–desorption behavior of Ga on GaAs surfaces. Surf. Sci. 493, 178 (2001)

    Article  CAS  Google Scholar 

  55. Y. Kangawa, T. Ito, Y.S. Hiraoka, A. Taguchi, K. Shiraishi, T. Ohachi, Theoretical approach to influence of As2 pressure on GaAs growth kinetics. Surf. Sci. 507, 285 (2002)

    Article  Google Scholar 

  56. S. Clarke, D.D. Vvedensky, Origin of reflection high-energy electron-diffraction intensity oscillations during molecular-beam epitaxy: a computational modeling approach. Phys. Rev. Lett. 58, 2235 (1987)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomonori Ito or Toru Akiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ito, T., Akiyama, T. (2018). Computational Methods. In: Matsuoka, T., Kangawa, Y. (eds) Epitaxial Growth of III-Nitride Compounds. Springer Series in Materials Science, vol 269. Springer, Cham. https://doi.org/10.1007/978-3-319-76641-6_2

Download citation

Publish with us

Policies and ethics