Skip to main content

On the Application of Sample Coefficient of Variation for Managing Loan Portfolio Risks

  • Chapter
  • First Online:
Recent Studies on Risk Analysis and Statistical Modeling

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Abstract

Banks and financial institutions are exposed with credit risk, liquidity risk, market risk, operational risk, and others. Credit risk often comes from undue concentration of loan portfolios. Among the diversity of tools available in literature for risk measurement, in our study the Coefficient of Variation (CV) was chosen taking into account that it reveals a very useful characteristic when loan portfolios comparison is desired: CV is unitless—it is independent of the unit of measure associated with the data. We obtain the lower and upper bounds for sample CV and the possibility of using it for measuring the risk concentration in a loan portfolio is investigated. The capital adequacy and the single borrower limit are considered and some theoretical results are obtained. Finally, we implement and illustrate this approach using a real data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albatineh, N.A., Golam Kibria, B.M., Wilcox, M.L., Zogheib, B.: Confidence interval estimation for the population coefficient of variation using ranked set sampling: a simulation study. J. Appl. Stat. 41(4), 733–751 (2014)

    Article  MathSciNet  Google Scholar 

  2. Albercher, H., Ladoucette, S.A., Teogels, J.L.: Asymptotic of the sample coefficient of variation and the sample dispersion, KU. Leuven USC report 2006–04 (Submitted, 2006)

    Google Scholar 

  3. Banik, S., Kibrie, B.M.G.: Estimating the population coefficient of variation by confidence intervals. Commun. Stat. Simul. Comput. 40(8), 1236–1261 (2011)

    Article  MathSciNet  Google Scholar 

  4. Broll, U., Wahl, J.E.: Optimum bank equity capital and value at risk. In: Scholz, C., Zentes, J. (eds.) Strategic Management, a European Approach, pp. 69–82. Springer, Wiesbaden (2002)

    Google Scholar 

  5. Curto, J.D., Pinto, J.C.: The coefficient of variation asymptotic distribution in case of non-iid random variables. J. Appl. Stat. 36(1), 21–32 (2009)

    Article  MathSciNet  Google Scholar 

  6. Donner, A., Zou, G.Y.: Closed-form confidence intervals for functions of the normal mean and standard deviation. Stat. Methods Med. Res. 21(4) 347–359 (2010)

    Article  MathSciNet  Google Scholar 

  7. Duffie, D., Pan, J.: An overview of value at risk. J. Deriv. 4, 7–49 (1997)

    Article  Google Scholar 

  8. Erlenmaier, U.: Risk Management in banking, credit risk management and bank closure policies. Ph.D. Thesis, Heidelberg, Germany (2001)

    Google Scholar 

  9. Feller, W.: An Introduction to Probability Theory and It’s Application. Wiley, New York (1971)

    Google Scholar 

  10. Forkman, J.: Statistical inference for the coefficient of variation in normally distributed data, Research Report, Centre of Biostochastics, Swedish University of Agricultural Sciences, 29 (2006)

    Google Scholar 

  11. Gordy, M.B.: A comparative anatomy of credit risk models. J. Bank. Financ. 24, 119–149 (1998)

    Article  Google Scholar 

  12. Hacioglu, U., Dincer, H.: Global Financial Crisis and Its Ramifications on Capital Markets. Springer, Berlin (2017)

    Book  Google Scholar 

  13. Hayter, A.J.: Confidence bounds on the coefficient of variation of a normal distribution with applications to win-probabilities. J. Stat. Comput. Simul. 85(18), 3778–3791 (2015)

    Article  MathSciNet  Google Scholar 

  14. Jorion, P.: Value at Risk: The New Benchmark for Controlling Market Risk. McGraw-Hill, New York (1997)

    Google Scholar 

  15. Mahmoudvand, R., Hassani, H., Wilson, R.: Is the sample coefficient of variation a good estimator for the population coefficient of variation? World Appl. Sci. J. 2(5), 519–522 (2007)

    Google Scholar 

  16. Pyle, D.H.: Bank risk management: theory. In: Conference of Risk Management and Regulation in Banking, Jerusalem (1997)

    Google Scholar 

  17. Sappakitkamjorn, J., Niwitpong, S.: Confidence intervals for the coefficients of variation with bounded parameters. World Acad. Sci. Eng. Technol. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 7(9), 1416–1421 (2013)

    Google Scholar 

  18. Saunders, A.: Credit Risk Management. Wiley, New York (1999)

    Google Scholar 

  19. Schreiber, B.Z., Wiener, Z., Zaken, D.: The implementation of value at risk in placecountry-region Israel’s banking system. Bank Isr. Bank. Syst. Rev. 7, 61–87 (1999)

    Google Scholar 

  20. Skridulyte, R., Freitakas, E.: The measurement of concentration risk in loan portfolios. J. Sci. Papers Econ. Sociol. 5(1), 51–61 (2012)

    Article  Google Scholar 

  21. Tian, L.: Inferences on the common coefficient of variation. Stat. Med. 24, 2213–2220 (2005)

    Article  MathSciNet  Google Scholar 

  22. Vangel, M.G.: Confidence intervals for a normal coefficient of variation. Am. Stat. 50(1), 21–26 (1996)

    MathSciNet  Google Scholar 

  23. Verrill, S.: Confidence bounds for normal and log-normal distribution coefficient of variation. Research Paper, EPL-RP-609, Madison, Wisconsin (2003)

    Google Scholar 

  24. Weber, E.U., Shafir, S., Blais, A.: Predicting risk sensitivity in humans and lower animals: risk as variance or coefficient of variation. Psychol. Rev. 111, 430–445 (2004)

    Article  Google Scholar 

  25. Zarei, A.: Measuring of credit risk portfolio of bank by method of coefficient variation bound. Soc. Sci. 11(16) 3908–3913 (2016)

    Google Scholar 

  26. Zhang, A.: Statistical methods in credit risk modelling. Ph.D. Thesis in Statistics, The University of Michigan (2009)

    Google Scholar 

Download references

Acknowledgements

Funded by FCT-Fundação para a Ciência e a Tecnologia, Portugal, through the project UID/MAT/00006/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa A. Oliveira .

Editor information

Editors and Affiliations

Appendix

Appendix

Let us first recall the Lyapanov Theorem.

Theorem 4

Let X 1, …, X n be independent random variables with different distribution. If

  1. (a)

    \(E\left [\left |X_{i} -E(X_{i} )\right |{ }^{3} \right ]<\infty \)

  2. (b)

    \( \mathop {\lim } \limits _{n\to \infty } \frac {\sum _{i=1}^{n}E\left [\left |X_{i} -E(X_{i} )\right |{ }^{3} \right ] }{\left (\sum _{i=1}^{n}var(X_{i} ) \right )^{3/2} } =0\) ,

then, we have

$$\displaystyle \begin{aligned} \begin{array}{rcl} \frac{\sum _{i=1}^{n}X_{i} -\sum _{i=1}^{n}E(X_{i} ) }{\sqrt{\sum _{i=1}^{n}var(X_{i} ) } } \to N(0,1). \end{array} \end{aligned} $$

Proof

See, e.g., Feller [9].

In order to apply this Theorem for L, we must check conditions (a) and (b). For the first condition, we have:

$$\displaystyle \begin{aligned} \begin{array}{rcl} E\left[\left|L_{i} -E(L_{i} )\right|{}^{3} \right]=E\left[\left|l_{i} B_{i} -l_{i} p\right|{}^{3} \right]=l_{i}^{3} p(1-p)\left(p^{2} +(1-p)^{2} \right)<\infty. \end{array} \end{aligned} $$

For condition (b), we have:

$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle \mathop{\lim }\limits_{n\to \infty } \frac{\sum _{i=1}^{n}E\left[\left|L_{i} -E(L_{i} )\right|{}^{3} \right] }{\left(\sum _{i=1}^{n}var(L_{i} ) \right)^{3/2} } \\ &\displaystyle =&\displaystyle \mathop{\lim }\limits_{n\to \infty } \frac{\sum _{i=1}^{n}l_{i}^{3} p(1-p)\left(p^{2} +(1-p)^{2} \right) }{\left(\sum _{i=1}^{n}l_{i}^{2} p(1-p) \right)^{3/2} } \\ &\displaystyle =&\displaystyle \frac{\left(p^{2} +(1-p)^{2} \right)}{\sqrt{p(1-p)} } \mathop{\lim }\limits_{n\to \infty } \frac{\sum _{i=1}^{n}l_{i}^{3} }{\left(\sum _{i=1}^{n}l_{i}^{2} \right)^{3/2} } \\ &\displaystyle \le&\displaystyle {\frac{\left(p^{2} +(1-p)^{2} \right)}{\sqrt{p(1-p)} } \mathop{\lim }\limits_{n\to \infty } \frac{n\max l_{i} }{\left(n\min l_{i} \right)^{3/2} } =0}. \end{array} \end{aligned} $$

Therefore, using Lyapanov theorem, we can conclude that

$$\displaystyle \begin{aligned} \begin{array}{rcl} \frac{L-E\left(L\right)}{\sqrt{var(L)} } \to N(0,1). \end{array} \end{aligned} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmoudvand, R., Oliveira, T.A. (2018). On the Application of Sample Coefficient of Variation for Managing Loan Portfolio Risks. In: Oliveira, T., Kitsos, C., Oliveira, A., Grilo, L. (eds) Recent Studies on Risk Analysis and Statistical Modeling. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-76605-8_6

Download citation

Publish with us

Policies and ethics