Skip to main content

Current Status of Octoploid Strawberry (Fragaria × ananassa) Genome Study

  • Chapter
  • First Online:
The Genomes of Rosaceous Berries and Their Wild Relatives

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The complex structure of the polyploid genome has inhibited advances in genomics and genetic analysis in polyploid species. Octoploid strawberry (Fragaria × ananassa) is allopolyploidy species (2n = 8x  = 56) with an estimated genome size of 1C = 708–720 Mb. The recent study reported by Tennessen et al. (2014) suggested that the genome of F. × ananassa consisted of each one pair of F. vesca-like and Fragaria iinumae-like genomes and two other pairs of subgenomes. Therefore, while the genome sequences of F. vesca have played an important role, the whole genome sequences of F. × ananassa are also essential for a more detailed and thorough understanding in studies about F. × ananassa. The construction of high-quality subgenome-specific reference sequences in F. × ananassa has been a long-dreamt goal, due to its potential for analyzing the expression of previously unexplored genes, such as in the evolution in Fragaria species, and for accelerating molecular breeding. In this chapter, we review the recent results of large-scale genome and transcriptome analyses related to genome sequence dissection in F. × ananassa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar D, Istrail S (2013) Haplotype assembly in polyploid genomes and identical by descent shared tracts. Bioinformatics 29(13):352–360

    Article  CAS  Google Scholar 

  • Akiyama Y, Yamamoto Y, Ohmido N et al (2001) Estimation of the nuclear DNA content of strawberries (Fragaria spp.) compared with Arabidopsis thaliana by using dual system flow cytometry. Cytologia 66:431–436

    Article  Google Scholar 

  • Amil-Ruiz F, Garrido-Gala J, Blanco-Portales R et al (2013) Kevin M. Folta, Juan Muñoz-Blanco, José L. Caballero Identification and validation of reference genes for transcript normalization in strawberry (Fragaria × ananassa) defense responses. PLoS ONE 8(8):e70603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassil NV, Davis TM, Zhang H et al (2015) Development and preliminary evaluation of a 90 K Axiom® SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa. BMC Genom 16:155

    Article  Google Scholar 

  • Bertioli DJ, Cannon SB, Froenicke L et al (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48:438–446

    Article  CAS  PubMed  Google Scholar 

  • Bringhurst RS (1990) Cytogenetics and evolution in american Fragaria. Hort Sci 106:679–683

    Google Scholar 

  • Chalhoub B, Denoeud F, Wincker P et al (2014) Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199):950–953

    Article  CAS  PubMed  Google Scholar 

  • Chambers AH, Pillet J, Plotto A et al (2014) Identification of a strawberry flavor gene candidate using an integrated genetic-genomic-analytical chemistry approach. BMC Genom 15:217

    Article  CAS  Google Scholar 

  • Chen J, Mao L, Lu W et al (2016) Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid. Planta 243(1):183–197

    Article  CAS  PubMed  Google Scholar 

  • Darwish O, Shahan R, Liu Z et al (2015) Re-annotation of the woodland strawberry (Fragaria vesca) genome. BMC Genom 16:29

    Article  CAS  Google Scholar 

  • Davik J, Sargent DJ, Brurberg MB (2015) A ddRAD based linkage map of the cultivated strawberry, Fragaria xananassa. PLoS One 10(9):e0137746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis TM, Denoyes-Rothan B, Lerceteau-Köhler E (2007) Strawberry. In: Kole C (ed) Genome mapping and molecular breeding inplants, vol 4. Fruit and Nuts. Springer, Berlin, pp 189–205

    Google Scholar 

  • D’Hont A, Denoeud F, Aury JM et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217

    Article  CAS  PubMed  Google Scholar 

  • Federova NJ (1946) Crossability and phylogenetic relations in the main European species of Fragaria. Compte-rendu de l’académie des Sciences de l’URSS 52:545–547

    Google Scholar 

  • Glover NM, Redestig H, Dessimoz C (2016) Homoeologs: what are they and how do we infer them? Trends Plant Sci 21(7):609–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindarajulu R, Parks M, Tennessen JA et al (2015) Comparison of nuclear, plastid, and mitochondrial phylogenies and the origin of wild octoploid strawberry species. Am J Bot. https://doi.org/10.3732/ajb.1500026

    Article  PubMed  Google Scholar 

  • Han J, Li A, Liu H et al (2014) Computational identification of microRNAs in the strawberry (Fragaria x ananassa) genome sequence and validation of their precise sequences by miR-RACE. Gene 536(1):151–162

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa H, Shirasawa K, Isobe SN et al (2014) Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species. DNA Res 21(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Honjo M, Kataoka S, Yui S et al (2009) Maternal lineages of the cultivated strawberry, Fragaria × ananassa, revealed by chloroplast DNA variation. HortScience 44(6):1562–1565

    Google Scholar 

  • Isobe SN, Hirakawa H, Sato S et al (2013) Construction of an integrated high density simple sequence repeat linkage map in cultivated strawberry (Fragaria × ananassa) and its applicability. DNA Res 20(1):79–92

    Article  CAS  PubMed  Google Scholar 

  • Kunihisa M (2011) Studies using DNA markers in F. × ananassa: genetic analysis, genome structure, and cultivar identification. J Jpn Soc Hort Sci 80:231–243

    Article  CAS  Google Scholar 

  • Li F, Fan G, Lu C et al (2015) Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530

    Article  CAS  PubMed  Google Scholar 

  • Ling HQ, Zhao S, Liu D et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Sun H, Zhao G et al (2008) Isolation and characterization of genomic retrotransposon sequences from octoploid strawberry (Fragaria × ananassa Duch.). Plant Cell Rep 27:499

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, He P, Sun H et al (2010) Isolation and characterization of transcriptionally active Ty1-copia retrotransposons in Fragaria × ananassa. Agric sci China 9(3):337–345

    Article  CAS  Google Scholar 

  • Mahoney LL, Quimby ML, Shields ME, Davis TM (2010) Mitochondrial DNA transmission, ancestry, and sequencing in Fragaria. Acta Hort 859:301–308

    Article  CAS  Google Scholar 

  • Michael TP, VanBuren R (2015) Progress, challenges and the future of crop genomes. Curr Opin Plant Biol 24:71–81

    Article  CAS  PubMed  Google Scholar 

  • Monden Y, Fujii N, Yamaguchi K et al (2014) Efficient screening of long terminal repeat retrotransposons that show high insertion polymorphism via high-throughput sequencing of the primer binding site. Genome 57(5):245–252

    Article  CAS  PubMed  Google Scholar 

  • Njuguna W, Liston A, Cronn R et al (2013) Insights into phylogeny, sex function and age of Fragaria based on whole chloroplast genome sequencing. Mol Phylogenet Evol 66(1):17–29

    Article  PubMed  Google Scholar 

  • Pillet J, Yu HW, Chambers AH et al (2015) Identification of candidate flavonoid pathway genes using transcriptome correlation network analysis in ripe strawberry (Fragaria × ananassa) fruits. J Exp Bot 66(15):4455–4467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Sevilla JF, Cruz-Rus E, Valpuesta V et al (2014) Deciphering gamma-decalactone biosynthesis in strawberry fruit using a combination of genetic mapping, RNA-Seq and eQTL analyses. BMC Genom 15:218

    Article  CAS  Google Scholar 

  • Sánchez-Sevilla JF, Horvath A, Botella MA et al (2015) Diversity arrays technology (DArT) marker platforms for diversity analysis and linkage mapping in a complex crop, the octoploid cultivated strawberry (Fragaria × ananassa). PLoS ONE 10(12):e0144960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sargent DJ, Yang Y, Šurbanovski N (2016) HaploSNP affinities and linkage map positions illuminate subgenome composition in the octoploid, cultivated strawberry (Fragaria × ananassa). Plant Sci 242:140–150

    Article  CAS  PubMed  Google Scholar 

  • Senanayake YDA, Bringhurst RS (1967) Origin of Fragaria polyploids. I. Cytological analysis. Am J Bot 54:221–228

    Article  Google Scholar 

  • Shirasawa K, Nagano S, Hirakawa H et al (2017) De novo whole genome assembly in allo-octoploid strawberry. In: Abstracts of international plant & animal genome XXV. San Diego, 14–18 Jan 2017

    Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116

    Article  CAS  PubMed  Google Scholar 

  • Song L, Shankar DS, Florea L (2016) Rascaf: improving genome assembly with RNA sequencing data. Plant Genome. https://doi.org/10.3835/plantgenome2016.03.0027

    Article  PubMed  Google Scholar 

  • Tennessen JA, Govindarajulu R, Ashman TL, Liston A (2014) Evolutionary origins and dynamics of octoploid strawberry subgenomes revealed by dense targeted capture linkage maps. Genome Biol Evol 6(12):3295–3313

    Article  PubMed  PubMed Central  Google Scholar 

  • Tewhey R, Bansal V, Torkamani A (2011) The importance of phase information for human genomics. Nat Rev Genet 12:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The International Wheat Genome Sequencing Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345(6194):1251788

    Article  CAS  Google Scholar 

  • Wang K, Wang Z, Li F et al (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Liu L, Ning C (2016) Alterations of DNA methylation and gene expression during hybridization and polyploidization in Fragaria spp. Sci Hortic 201:218–224

    Article  CAS  Google Scholar 

  • Xu X, Yin L, Ying Q et al (2013) High-throughput sequencing and degradome analysis identify miRNAs and their targets involved in fruit senescence of Fragaria ananassa. PLoS ONE 8(8):e70959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagi T, Noguchi Y (2016) Strawberry (Plants in the genus Fragaria) In: Mason AS (ed) Polyploidy and hybridization for crop improvement. CRC press, FL, US, pp 115–151

    Google Scholar 

  • Yang J, Liu D, Wang X et al (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet 48:1225–1232

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachiko N. Isobe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Isobe, S.N., Shirasawa, K., Nagano, S., Hirakawa, H. (2018). Current Status of Octoploid Strawberry (Fragaria × ananassa) Genome Study. In: Hytönen, T., Graham, J., Harrison, R. (eds) The Genomes of Rosaceous Berries and Their Wild Relatives. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-76020-9_10

Download citation

Publish with us

Policies and ethics